5,473 research outputs found
Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam
The T2K experiment observes indications of nu(mu) -> nu(mu) e appearance in data accumulated with 1.43 x 10(20) protons on target. Six events pass all selection criteria at the far detector. In a three-flavor neutrino oscillation scenario with |Delta m(23)(2)| = 2.4 x 10(-3) eV(2), sin(2)2 theta(23) = 1 and sin(2)2 theta(13) = 0, the expected number of such events is 1.5 +/- 0.3(syst). Under this hypothesis, the probability to observe six or more candidate events is 7 x 10(-3), equivalent to 2.5 sigma significance. At 90% C.L., the data are consistent with 0.03(0.04) < sin(2)2 theta(13) < 0.28(0.34) for delta(CP) = 0 and a normal (inverted) hierarchy
Multilinear Wavelets: A Statistical Shape Space for Human Faces
We present a statistical model for D human faces in varying expression,
which decomposes the surface of the face using a wavelet transform, and learns
many localized, decorrelated multilinear models on the resulting coefficients.
Using this model we are able to reconstruct faces from noisy and occluded D
face scans, and facial motion sequences. Accurate reconstruction of face shape
is important for applications such as tele-presence and gaming. The localized
and multi-scale nature of our model allows for recovery of fine-scale detail
while retaining robustness to severe noise and occlusion, and is
computationally efficient and scalable. We validate these properties
experimentally on challenging data in the form of static scans and motion
sequences. We show that in comparison to a global multilinear model, our model
better preserves fine detail and is computationally faster, while in comparison
to a localized PCA model, our model better handles variation in expression, is
faster, and allows us to fix identity parameters for a given subject.Comment: 10 pages, 7 figures; accepted to ECCV 201
On the curvature of vortex moduli spaces
We use algebraic topology to investigate local curvature properties of the
moduli spaces of gauged vortices on a closed Riemann surface. After computing
the homotopy type of the universal cover of the moduli spaces (which are
symmetric powers of the surface), we prove that, for genus g>1, the holomorphic
bisectional curvature of the vortex metrics cannot always be nonnegative in the
multivortex case, and this property extends to all Kaehler metrics on certain
symmetric powers. Our result rules out an established and natural conjecture on
the geometry of the moduli spaces.Comment: 25 pages; final version, to appear in Math.
Ideal MHD theory of low-frequency Alfven waves in the H-1 Heliac
A part analytical, part numerical ideal MHD analysis of low-frequency Alfven
wave physics in the H-1 stellarator is given. The three-dimensional,
compressible ideal spectrum for H-1 is presented and it is found that despite
the low beta (approx. 10^-4) of H-1 plasmas, significant Alfven-acoustic
interactions occur at low frequencies. Several quasi-discrete modes are found
with the three-dimensional linearised ideal MHD eigenmode solver CAS3D,
including beta-induced Alfven eigenmode (BAE)- type modes in beta-induced gaps.
The strongly shaped, low-aspect ratio magnetic geometry of H-1 causes CAS3D
convergence difficulties requiring the inclusion of many Fourier harmonics for
the parallel component of the fluid displacement eigenvector even for shear
wave motions. The highest beta-induced gap reproduces large parts of the
observed configurational frequency dependencies in the presence of hollow
temperature profiles
Ground-based remote sensing of an elevated forest fire aerosol layer at Whistler, BC: implications for interpretation of mountaintop chemistry
On 30 August 2009, intense forest fires in interior British Columbia (BC)
coupled with winds from the east and northeast resulted in transport of a
broad forest fire plume across southwestern BC. The physico-chemical and
optical characteristics of the plume as observed from Saturna Island
(AERONET), CORALNet-UBC and the Whistler Mountain air chemistry facility
were consistent with forest fire plumes that have been observed elsewhere in
continental North America. However, the importance of three-dimensional
transport in relation to the interpretation of mountaintop chemistry
observations is highlighted on the basis of deployment of both a <i>CL31</i> ceilometer
and a single particle mass spectrometer (SPMS) in a mountainous setting. The
SPMS is used to identify the biomass plume based on levoglucosan and
potassium markers. Data from the SPMS are also used to show that the
biomass plume was correlated with nitrate, but not correlated with sulphate
or sodium. This study not only provides baseline measurements of biomass
burning plume physico-chemical characteristics in western Canada, but also
highlights the importance of lidar remote sensing methods in the
interpretation of mountaintop chemistry measurements
Infinitesimals without Logic
We introduce the ring of Fermat reals, an extension of the real field
containing nilpotent infinitesimals. The construction takes inspiration from
Smooth Infinitesimal Analysis (SIA), but provides a powerful theory of actual
infinitesimals without any need of a background in mathematical logic. In
particular, on the contrary with respect to SIA, which admits models only in
intuitionistic logic, the theory of Fermat reals is consistent with classical
logic. We face the problem to decide if the product of powers of nilpotent
infinitesimals is zero or not, the identity principle for polynomials, the
definition and properties of the total order relation. The construction is
highly constructive, and every Fermat real admits a clear and order preserving
geometrical representation. Using nilpotent infinitesimals, every smooth
functions becomes a polynomial because in Taylor's formulas the rest is now
zero. Finally, we present several applications to informal classical
calculations used in Physics: now all these calculations become rigorous and,
at the same time, formally equal to the informal ones. In particular, an
interesting rigorous deduction of the wave equation is given, that clarifies
how to formalize the approximations tied with Hook's law using this language of
nilpotent infinitesimals.Comment: The first part of the preprint is taken directly form arXiv:0907.1872
The second part is new and contains a list of example
Cold atoms in videotape micro-traps
We describe an array of microscopic atom traps formed by a pattern of
magnetisation on a piece of videotape. We describe the way in which cold atoms
are loaded into one of these micro-traps and how the trapped atom cloud is used
to explore the properties of the trap. Evaporative cooling in the micro-trap
down to a temperature of 1 microkelvin allows us to probe the smoothness of the
trapping potential and reveals some inhomogeneity produced by the magnetic
film. We discuss future prospects for atom chips based on microscopic
permanent-magnet structures.Comment: Submitted for EPJD topical issue "Atom chips: manipulating atoms and
molecules with microfabricated structures
Fluctuation-dissipation considerations and damping models for ferromagnetic materials
The role of fluctuation-dissipation relations (theorems) for the
magnetization dynamics with Landau-Lifshitz-Gilbert and Bloch-Bloembergen
damping terms are discussed. We demonstrate that the use of the Callen-Welton
fluctuation-dissipation theorem that was proven for Hamiltonian systems can
give an inconsistent result for magnetic systems with dissipation
Theory of traveling filaments in bistable semiconductor structures
We present a generic nonlinear model for current filamentation in
semiconductor structures with S-shaped current-voltage characteristics. The
model accounts for Joule self-heating of a current density filament. It is
shown that the self-heating leads to a bifurcation from static to traveling
filament. Filaments start to travel when increase of the lattice temperature
has negative impact on the cathode-anode transport. Since the impact ionization
rate decreases with temperature, this occurs for a wide class of semiconductor
systems whose bistability is due to the avalanche impact ionization. We develop
an analytical theory of traveling filaments which reveals the mechanism of
filament motion, find the condition for bifurcation to traveling filament, and
determine the filament velocity.Comment: 13 pages, 5 figure
- …