439 research outputs found
Optimization of stochastic lossy transport networks and applications to power grids
Motivated by developments in renewable energy and smart grids, we formulate a
stylized mathematical model of a transport network with stochastic load
fluctuations. Using an affine control rule, we explore the trade-off between
the number of controllable resources in a lossy transport network and the
performance gain they yield in terms of expected power losses. Our results are
explicit and reveal the interaction between the level of flexibility, the
intrinsic load uncertainty and the network structure.Comment: 30 pages, 10 figure
A large-deviations analysis of the GI/GI/1 SRPT queue
We consider a GI/GI/1 queue with the shortest remaining processing time
discipline (SRPT) and light-tailed service times. Our interest is focused on
the tail behavior of the sojourn-time distribution. We obtain a general
expression for its large-deviations decay rate. The value of this decay rate
critically depends on whether there is mass in the endpoint of the service-time
distribution or not. An auxiliary priority queue, for which we obtain some new
results, plays an important role in our analysis. We apply our SRPT-results to
compare SRPT with FIFO from a large-deviations point of view.Comment: 22 page
Separation of timescales in a two-layered network
We investigate a computer network consisting of two layers occurring in, for
example, application servers. The first layer incorporates the arrival of jobs
at a network of multi-server nodes, which we model as a many-server Jackson
network. At the second layer, active servers at these nodes act now as
customers who are served by a common CPU. Our main result shows a separation of
time scales in heavy traffic: the main source of randomness occurs at the
(aggregate) CPU layer; the interactions between different types of nodes at the
other layer is shown to converge to a fixed point at a faster time scale; this
also yields a state-space collapse property. Apart from these fundamental
insights, we also obtain an explicit approximation for the joint law of the
number of jobs in the system, which is provably accurate for heavily loaded
systems and performs numerically well for moderately loaded systems. The
obtained results for the model under consideration can be applied to
thread-pool dimensioning in application servers, while the technique seems
applicable to other layered systems too.Comment: 8 pages, 2 figures, 1 table, ITC 24 (2012
Exact asymptotics for fluid queues fed by multiple heavy-tailed on-off flows
We consider a fluid queue fed by multiple On-Off flows with heavy-tailed
(regularly varying) On periods. Under fairly mild assumptions, we prove that
the workload distribution is asymptotically equivalent to that in a reduced
system. The reduced system consists of a ``dominant'' subset of the flows, with
the original service rate subtracted by the mean rate of the other flows. We
describe how a dominant set may be determined from a simple knapsack
formulation. The dominant set consists of a ``minimally critical'' set of
On-Off flows with regularly varying On periods. In case the dominant set
contains just a single On-Off flow, the exact asymptotics for the reduced
system follow from known results. For the case of several
On-Off flows, we exploit a powerful intuitive argument to obtain the exact
asymptotics. Combined with the reduced-load equivalence, the results for the
reduced system provide a characterization of the tail of the workload
distribution for a wide range of traffic scenarios
- …