439 research outputs found

    Optimization of stochastic lossy transport networks and applications to power grids

    Get PDF
    Motivated by developments in renewable energy and smart grids, we formulate a stylized mathematical model of a transport network with stochastic load fluctuations. Using an affine control rule, we explore the trade-off between the number of controllable resources in a lossy transport network and the performance gain they yield in terms of expected power losses. Our results are explicit and reveal the interaction between the level of flexibility, the intrinsic load uncertainty and the network structure.Comment: 30 pages, 10 figure

    A large-deviations analysis of the GI/GI/1 SRPT queue

    Get PDF
    We consider a GI/GI/1 queue with the shortest remaining processing time discipline (SRPT) and light-tailed service times. Our interest is focused on the tail behavior of the sojourn-time distribution. We obtain a general expression for its large-deviations decay rate. The value of this decay rate critically depends on whether there is mass in the endpoint of the service-time distribution or not. An auxiliary priority queue, for which we obtain some new results, plays an important role in our analysis. We apply our SRPT-results to compare SRPT with FIFO from a large-deviations point of view.Comment: 22 page

    Separation of timescales in a two-layered network

    Full text link
    We investigate a computer network consisting of two layers occurring in, for example, application servers. The first layer incorporates the arrival of jobs at a network of multi-server nodes, which we model as a many-server Jackson network. At the second layer, active servers at these nodes act now as customers who are served by a common CPU. Our main result shows a separation of time scales in heavy traffic: the main source of randomness occurs at the (aggregate) CPU layer; the interactions between different types of nodes at the other layer is shown to converge to a fixed point at a faster time scale; this also yields a state-space collapse property. Apart from these fundamental insights, we also obtain an explicit approximation for the joint law of the number of jobs in the system, which is provably accurate for heavily loaded systems and performs numerically well for moderately loaded systems. The obtained results for the model under consideration can be applied to thread-pool dimensioning in application servers, while the technique seems applicable to other layered systems too.Comment: 8 pages, 2 figures, 1 table, ITC 24 (2012

    Exact asymptotics for fluid queues fed by multiple heavy-tailed on-off flows

    Get PDF
    We consider a fluid queue fed by multiple On-Off flows with heavy-tailed (regularly varying) On periods. Under fairly mild assumptions, we prove that the workload distribution is asymptotically equivalent to that in a reduced system. The reduced system consists of a ``dominant'' subset of the flows, with the original service rate subtracted by the mean rate of the other flows. We describe how a dominant set may be determined from a simple knapsack formulation. The dominant set consists of a ``minimally critical'' set of On-Off flows with regularly varying On periods. In case the dominant set contains just a single On-Off flow, the exact asymptotics for the reduced system follow from known results. For the case of several On-Off flows, we exploit a powerful intuitive argument to obtain the exact asymptotics. Combined with the reduced-load equivalence, the results for the reduced system provide a characterization of the tail of the workload distribution for a wide range of traffic scenarios
    corecore