47,757 research outputs found
Flying qualities criteria for superaugmented aircraft
An overview of Dryden superaugmented aircraft flying qualities research is presented. This includes F-8 digital fly by wire flight experiments, orbiter flying qualities, shuttle improvements, AFTI/F-16, flying qualities and control system alternatives, Vertical Motion Simulator Shuttle evaluation and Total in Flight Simulator pitch rate criteria
RWF rotor-wake-fuselage code software reference guide
The RWF (Rotor-Wake-Fuselage) code was developed from first principles to compute the aerodynamics associated with the complex flow field of helicopter configurations. The code is sized for a single, multi-bladed main rotor and any configuration of non-lifting fuselage. The mathematical model for the RWF code is based on the integration of the momentum equations and Green's theorem. The unknowns in the problem are the strengths of prescribed singularity distributions on the boundaries of the flow. For the body (fuselage) a surface of constant strength source panels is used. For the rotor blades and rotor wake a surface of constant strength doublet panels is used. The mean camber line of the rotor airfoil is partitioned into surface panels. The no-flow boundary condition at the panel centroids is modified at each azimuthal step to account for rotor blade cyclic pitch variation. The geometry of the rotor wake is computers at each time step of the solution. The code produces rotor and fuselage surface pressures, as well as the complex geometry of the evolving rotor wake
Fractals and Scars on a Compact Octagon
A finite universe naturally supports chaotic classical motion. An ordered
fractal emerges from the chaotic dynamics which we characterize in full for a
compact 2-dimensional octagon. In the classical to quantum transition, the
underlying fractal can persist in the form of scars, ridges of enhanced
amplitude in the semiclassical wave function. Although the scarring is weak on
the octagon, we suggest possible subtle implications of fractals and scars in a
finite universe.Comment: 6 pages, 3 figs, LaTeX fil
Linear-optical processing cannot increase photon efficiency
We answer the question whether linear-optical processing of the states
produced by one or multiple imperfect single-photon sources can improve the
single-photon fidelity. This processing can include arbitrary interferometers,
coherent states, feedforward, and conditioning on results of detections. We
show that without introducing multiphoton components, the single-photon
fraction in any of the single-mode states resulting from such processing cannot
be made to exceed the efficiency of the best available photon source. If
multiphoton components are allowed, the single-photon fidelity cannot be
increased beyond 1/2. We propose a natural general definition of the
quantum-optical state efficiency, and show that it cannot increase under
linear-optical processing.Comment: 4 pages, 3 figure
Adaptive Quantum Measurements of a Continuously Varying Phase
We analyze the problem of quantum-limited estimation of a stochastically
varying phase of a continuous beam (rather than a pulse) of the electromagnetic
field. We consider both non-adaptive and adaptive measurements, and both dyne
detection (using a local oscillator) and interferometric detection. We take the
phase variation to be \dot\phi = \sqrt{\kappa}\xi(t), where \xi(t) is
\delta-correlated Gaussian noise. For a beam of power P, the important
dimensionless parameter is N=P/\hbar\omega\kappa, the number of photons per
coherence time. For the case of dyne detection, both continuous-wave (cw)
coherent beams and cw (broadband) squeezed beams are considered. For a coherent
beam a simple feedback scheme gives good results, with a phase variance \simeq
N^{-1/2}/2. This is \sqrt{2} times smaller than that achievable by nonadaptive
(heterodyne) detection. For a squeezed beam a more accurate feedback scheme
gives a variance scaling as N^{-2/3}, compared to N^{-1/2} for heterodyne
detection. For the case of interferometry only a coherent input into one port
is considered. The locally optimal feedback scheme is identified, and it is
shown to give a variance scaling as N^{-1/2}. It offers a significant
improvement over nonadaptive interferometry only for N of order unity.Comment: 11 pages, 6 figures, journal versio
Crime, Urban Flight, and the Consequences for Cities
This paper demonstrates that rising crime rates in cities are correlated with city depopulation. Instrumental variables estimates, using measures of the certainty and severity of a state?s criminal justice system as instruments for city crime rates, imply that the direction of causality runs from crime to urban flight. Using annual city-level panel data, our estimates suggest that each additional reported crime is associated with a one person decline in city residents. There is some evidence that increases in suburban crime tend to keep people in cities, although the magnitude of this effect is small. Analysis of individual-level data from the 1980 census confirms the city-level results and demonstrates that almost all of the crime-related population decline is attributable to increased outmigration rather than a decrease in new arrivals to a city. Those households that leave the city because of crime are much more likely to remain within the SMSA than those leaving the city for other reasons. The migration decisions of high-income households and those with children are much more responsive to changes in crime than other households. Crime-related mobility imposes costs on those who choose to remain in the city through declining property values and a shrinking tax base.
Comparison of pilot effective time delay for cockpit controllers used on space shuttle and conventional aircraft
A study was conducted at the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) to compare pilot effective time delay for the space shuttle rotational hand controller with that for conventional stick controllers. The space shuttle controller has three degrees of freedom and nonlinear gearing. The conventional stick has two degrees of freedom and linear gearing. Two spring constants were used, allowing the conventional stick to be evaluated in both a light and a heavy configuration. Pilot effective time delay was obtained separately for pitch and roll through first-order, closed-loop, compensatory tracking tasks. The tasks were implemented through the space shuttle cockpit simulator and a critical task tester device. A total of 900 data runs were made using four test pilots and one nonpilot (engineer) for two system delays in pitch and roll modes. Results showed that the heavier conventional control stick had the lowest pilot effective time delays. The light conventional control stick had pilot effective time delays similar to those of the shuttle controller. All configurations showed an increase in pilot effective time delay with an increase in total system delay
Computing induced velocity perturbations due to a helicopter fuselage in a free stream
The velocity field of a representative helicopter fuselage in a free stream is computed. Perturbation velocities due to the fuselage are computed in a plan above the location of the helicopter rotor (rotor removed). The velocity perturbations computed by a source-panel model of the fuselage are compared with experimental measurements taken with a laser velocimeter. Three paneled fuselage models are studied: fuselage shape, fuselage shape with hub shape, and a body of revolution. The velocity perturbations computed for both fuselage shape models agree well with the measured velocity field except in the close vicinity of the rotor hub. In the hub region, without knowing the extent of separation, modeling of the effective source shape is difficult. The effects of the fuselage perturbations are not well-predicted with a simplified ellipsoid fuselage. The velocity perturbations due to the fuselage at the plane of the measurements have magnitudes of less than 8 percent of free-stream velocity. The velocity perturbations computed by the panel method are tabulated for the same locations at which previously reported rotor-inflow velocity measurements were made
- …