2,602 research outputs found
Passive scalars in turbulent channel flow at high Reynolds number
We study passive scalars in turbulent plane channels at computationally high Reynolds number, thus allowing us to observe previously unnoticed effects. The mean scalar profiles are found to obey a generalized logarithmic law which includes a linear correction term in the whole lower half-channel, and they follow a universal parabolic defect profile in the core region. This is consistent with recent findings regarding the mean velocity profiles in channel flow. The scalar variances also exhibit a near universal parabolic distribution in the core flow and hints of a sizeable log layer, unlike the velocity variances. The energy spectra highlight the formation of large scalar-bearing eddies with size proportional to the channel height which are caused by a local production excess over dissipation, and which are clearly visible in the flow visualizations. Close correspondence of the momentum and scalar eddies is observed, with the main difference being that the latter tend to form sharper gradients, which translates into higher scalar dissipation. Another notable Reynolds number effect is the decreased correlation of the passive scalar field with the vertical velocity field, which is traced to the reduced effectiveness of ejection event
High-Reynolds-number effects on turbulent scalings in compressible channel flow
The effect of the Reynolds number in a supersonic isothermal channel flow is studied using a direct numerical simulation (DNS). The bulk Mach number based on the wall temperature is 1.5, and the bulk Reynolds number is increased up to Reτ ≈ 1000. The use of van Driest velocity transformation in the presence of heated walls has been questioned due to the poor accuracy at low Reynolds number. For this reason alternative transformations of the velocity profile and turbulence statistics have been proposed, as, for instance, semi-local scalings. We show that the van Driest transformation recovers its accuracy as the Reynolds number is increased. The Reynolds stresses collapse on the incompressible ones, when properly scaled with density, and very good agreement with the incompressible stresses is found in the outer layer
Production and characterization of CSSI003 (2961) human induced pluripotent stem cells (iPSCs) carrying a novel puntiform mutation in RAI1 gene, Causative of Smith–Magenis syndrome
Smith-Magenis syndrome (SMS) is a complex genetic disorder characterized by developmental delay, behavioural
problems and circadian rhythm dysregulation. About 90% of SMS cases are due to a 17p11.2 deletion containing
retinoic acid induced1 (RAI1) gene, 10% are due to heterozygousmutations affecting RAI1 coding region.
Little is known about RAI1 role
Enteric dysfunctions in experimental Parkinson's disease: alterations of excitatory cholinergic neurotransmission regulating colonic motility in rats
Parkinson's disease (PD) is frequently associated with gastrointestinal symptoms, mostly represented by constipation and defecatory dysfunctions. This study examined the impact of central dopaminergic denervation, induced by injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle, on distal colonic excitatory cholinergic neuromotor activity in rats. Animals were euthanized 4 and 8 weeks after 6-OHDA injection. In vivo colonic transit was evaluated by radiological assay. Electrically and carbachol-induced cholinergic contractions were recorded in vitro from longitudinal and circular muscle colonic preparations, while acetylcholine levels were assayed in their incubation media. Choline acetyltransferase (ChAT), HuC/D (pan-neuronal marker), muscarinic M2 and M3 receptors. As compared with control rats, at week 4 6-OHDA-treated animals displayed the following changes: decreased in vivo colonic transit rate; impaired electrically evoked neurogenic cholinergic contractions; enhanced carbachol-induced contractions; decreased basal and electrically stimulated acetylcholine release from colonic tissues; decreased ChAT immunopositivity in the neuromuscular layer; unchanged density of HuC/D immunoreactive myenteric neurons; increased expression of colonic muscarinic M2 and M3 receptors. The majority of such alterations were detected also at week 8 post-6-OHDA injection. These findings indicate that central nigrostriatal dopaminergic denervation is associated with an impaired excitatory neurotransmission characterized by a loss of myenteric neuronal ChAT positivity and decrease in acetylcholine release, resulting in a dysregulated smooth muscle motor activity, which likely contributes to the concomitant decrease in colonic transit rate
Copy number variations in healthy subjects. Case study: iPSC line CSSi005-A (3544) production from an individual with variation in 15q13.3 chromosome duplicating gene CHRNA7
CHRNA7, encoding the neuronal alpha7 nicotinic acetylcholine receptor (a7nAChR), is highly expressed in the brain, particularly in the hippocampus. It is situated in the 15q13.3 chromosome region, frequently associated with a Copy Number Variation (CNV), which causes its duplication or deletion. The clinical significance of CHRNA7 duplications is unknown so far, but there are several research data suggesting that they may be pathogenic, with reduced penetrance. We have produced an iPS cell line from a single healthy donor's fibroblasts carrying a 15q13.3 CNV, including CHRNA7 in order to study the exact role of this CNV during the neurodevelopment
Alteration of colonic excitatory tachykininergic motility and enteric inflammation following dopaminergic nigrostriatal neurodegeneration
Background: Parkinson's disease (PD) is frequently associated with gastrointestinal (GI) symptoms, including constipation and defecatory dysfunctions. The mechanisms underlying such disorders are still largely unknown, although the occurrence of a bowel inflammatory condition has been hypothesized. This study examined the impact of central dopaminergic degeneration, induced by intranigral injection of 6-hydroxydopamine (6-OHDA), on distal colonic excitatory tachykininergic motility in rats.
Methods: Animals were euthanized 4 and 8 weeks after 6-OHDA injection. Tachykininergic contractions, elicited by electrical stimulation or exogenous substance P (SP), were recorded in vitro from longitudinal muscle colonic preparations. SP, tachykininergic NK1 receptor, and glial fibrillary acidic protein (GFAP) expression, as well as the density of eosinophils and mast cells in the colonic wall, were examined by immunohistochemical analysis. Malondialdehyde (MDA, colorimetric assay), TNF, and IL-1 beta (ELISA assay) levels were also examined. The polarization of peritoneal macrophages was evaluated by real-time PCR.
Results: In colonic preparations, electrically and SP-evoked tachykininergic contractions were increased in 6-OHDA rats. Immunohistochemistry displayed an increase in SP and GFAP levels in the myenteric plexus, as well as NK1 receptor expression in the colonic muscle layer of 6-OHDA rats. MDA, TNF, and IL-1 beta levels were increased also in colonic tissues from 6-OHDA rats. In 6-OHDA rats, the number of eosinophils and mast cells was increased as compared with control animals, and peritoneal macrophages polarized towards a pro-inflammatory phenotype.
Conclusions: The results indicate that the induction of central nigrostriatal dopaminergic degeneration is followed by bowel inflammation associated with increased oxidative stress, increase in pro-inflammatory cytokine levels, activation of enteric glia and inflammatory cells, and enhancement of colonic excitatory tachykininergic motility
A new procedure to carry out noise and vibration measurements oriented to support an annoyance evaluation in the framework of the Life SNEAK project
- …