631 research outputs found

    On gamma and neutrino radiation from Cyg X-3

    Get PDF
    The production of high energy gamma and neutrino radiation is studied for Cyg X-3. A heating model is proposed to explain the presence of only one gamma-pulse during 4.8 h period of the source. The acceleration mechanisms are discussed. High energy neutrino flux from Cyg X-3 is calculated

    Diffusive propagation of UHECR and the propagation theorem

    Full text link
    We present a detailed analytical study of the propagation of ultra high energy (UHE) particles in extragalactic magnetic fields. The crucial parameter which affects the diffuse spectrum is the separation between sources. In the case of a uniform distribution of sources with a separation between them much smaller than all characteristic propagation lengths, the diffuse spectrum of UHE particles has a {\em universal} form, independent of the mode of propagation. This statement has a status of theorem. The proof is obtained using the particle number conservation during propagation, and also using the kinetic equation for the propagation of UHE particles. This theorem can be also proved with the help of the diffusion equation. In particular, it is shown numerically, how the diffuse fluxes converge to this universal spectrum, when the separation between sources diminishes. We study also the analytic solution of the diffusion equation in weak and strong magnetic fields with energy losses taken into account. In the case of strong magnetic fields and for a separation between sources large enough, the GZK cutoff can practically disappear, as it has been found early in numerical simulations. In practice, however, the source luminosities required are too large for this possibility.Comment: 16 pages, 13 eps figures, discussion of the absence of the GZK cut-off in strong magnetic field added, a misprint in figure 6 corrected, version accepted for publication in Ap

    High Energy Neutrinos: Sources and Fluxes

    Full text link
    We discuss briefly the potential sources of high energy astrophysical neutrinos and show estimates of the neutrino fluxes that they can produce. A special attention is paid to the connection between the highest energy cosmic rays and astrophysical neutrinos.Comment: 7 pages, 2 figures, submitted to the Proceedings of TAUP 2005 workshop, corrected left panel of figure

    Anti-GZK effect in UHECR spectrum

    Full text link
    In this paper we discuss the anti-GZK effect that arises in the framework of the diffusive propagation of Ultra High Energy (UHE) protons. This effect consists in a jump-like increase of the maximum distance from which UHE protons can reach the observer. The position of the jump is independent of the Intergalactic Magnetic Field (IMF) strength and depends only on the energy losses of protons, namely on the transition energy from adiabatic and pair-production energy losses. The Ultra High Energy Cosmic Rays (UHECR) spectrum presents a low-energy steepening approximately at this energy, which is very close to the position of the observed second knee. The dip, seen in the universal spectrum as a signature of the proton interaction with the Cosmic Microwave Background (CMB) radiation, is also present in the case of diffusive propagation in magnetic fields.Comment: 4 pages, 4 eps figures, talk given at IFAE 2005: Incotri Fisica Alte Energie, Catania, Italy, 30 March - 2 April 200

    Neutrinos: the Key to UHE Cosmic Rays

    Full text link
    Observations of ultrahigh energy cosmic rays (UHECR) do not uniquely determine both the injection spectrum and the evolution model for UHECR sources - primarily because interactions during propagation obscure the early Universe from direct observation. Detection of neutrinos produced in those same interactions, coupled with UHECR results, would provide a full description of UHECR source properties.Comment: three pages, three figures. corrected typo

    On some problems of gamma-astronomy

    Get PDF
    Gamma ray emissions from young supernova remnants are discussed and calculated. The positron annihilation line is also calculated. Decay of charged pions in remnants cause generation of high energy neutrinos. This emission of neutrinos is reviewed. The CR origin and gamma emission from Magellanic clouds help to establish the intensity gradient in the galaxy. This gamma astronomical data is briefly discussed

    Neutrino-antineutrino annihilation around collapsing star

    Get PDF
    Stellar collapse is accompanied by emission of E sub neutrino approximately 10 MeV neutrinos and antineutrinos with the energy output W sub neutrino approximately 10 to the 53rd power to 10 to the 54th power erg. Annihilation of these particles in the vicinity of collapsar is considered. The physical consequences are discussed

    Disappointing model for ultrahigh-energy cosmic rays

    Full text link
    Data of Pierre Auger Observatory show a proton-dominated chemical composition of ultrahigh-energy cosmic rays spectrum at (1 - 3) EeV and a steadily heavier composition with energy increasing. In order to explain this feature we assume that (1 - 3) EeV protons are extragalactic and derive their maximum acceleration energy, E_p^{max} \simeq 4 EeV, compatible with both the spectrum and the composition. We also assume the rigidity-dependent acceleration mechanism of heavier nuclei, E_A^{max} = Z x E_p^{max}. The proposed model has rather disappointing consequences: i) no pion photo-production on CMB photons in extragalactic space and hence ii) no high-energy cosmogenic neutrino fluxes; iii) no GZK-cutoff in the spectrum; iv) no correlation with nearby sources due to nuclei deflection in the galactic magnetic fields up to highest energies.Comment: 4 pages, 7 figures, the talk presented by A. Gazizov at NPA5 Conference, April 3-8, 2011, Eilat, Israe
    • …