461 research outputs found
Genomic aberrations in normal tissue adjacent to HER2-amplified breast cancers: field cancerization or contaminating tumor cells?
Field cancerization effects as well as isolated tumor cell foci extending well beyond the invasive tumor margin have been described previously to account for local recurrence rates following breast conserving surgery despite adequate surgical margins and breast radiotherapy. To look for evidence of possible tumor cell contamination or field cancerization by genetic effects, a pilot study (Study 1: 12 sample pairs) followed by a verification study (Study 2: 20 sample pairs) were performed on DNA extracted from HER2-positive breast tumors and matching normal adjacent mammary tissue samples excised 1-3 cm beyond the invasive tumor margin. High-resolution molecular inversion probe (MIP) arrays were used to compare genomic copy number variations, including increased HER2 gene copies, between the paired samples; as well, a detailed histologic and immunohistochemical (IHC) re-evaluation of all Study 2 samples was performed blinded to the genomic results to characterize the adjacent normal tissue composition bracketing the DNA-extracted samples. Overall, 14/32 (44 %) sample pairs from both studies produced genome-wide evidence of genetic aberrations including HER2 copy number gains within the adjacent normal tissue samples. The observed single-parental origin of monoallelic HER2 amplicon haplotypes shared by informative tumor-normal pairs, as well as commonly gained loci elsewhere on 17q, suggested the presence of contaminating tumor cells in the genomically aberrant normal samples. Histologic and IHC analyses identified occult 25-200 μm tumor cell clusters overexpressing HER2 scattered in more than half, but not all, of the genomically aberrant normal samples re-evaluated, but in none of the genomically normal samples. These genomic and microscopic findings support the conclusion that tumor cell contamination rather than genetic field cancerization represents the likeliest cause of local clinical recurrence rates following breast conserving surgery, and mandate caution in assuming the genomic normalcy of histologically benign appearing peritumor breast tissue
Reactivity of Zinc Finger Cysteines: Chemical Modifications Within Labile Zinc Fingers in Estrogen Receptor
Estrogen receptor (ER, alpha isoform) is a 67 kDa zinc finger transcription factor that plays a fundamental role in both normal reproductive gland development and breast carcinogenesis, and also represents a critical molecular target for breast cancer therapy. We are investigating the structural consequences of chemical exposures thought to modify essential zinc finger cysteine residues in human ER. The current study employs mass spectrometry to probe ER zinc finger structural changes induced by a redox-reactive vitamin K3 analog, menadione; a commonly used cysteine alkylator, iodoacetic acid; and a thiol alkylating fluorophore, monobromobimane. Although they are slower to react, the sterically bulkier reagents, monobromobimane and menadione, effectively alkylate the most susceptible ER zinc finger cysteine sulfhydryl groups. Menadione arylation results first in Michael addition of the hydroquinone followed by rapid oxidation to the corresponding quinone, evidenced by a 2 Da mass loss per cysteine residue. Mass spectrometric analysis performed under MALDI conditions reveals both hydroquinone and quinone forms of arylated menadione, whereas only the quinone product is detectable under ESI conditions. Tandem mass spectrometry of a synthetic peptide encompassing the C-terminal half of the structurally more labile second zinc finger of ER (ZnF2B) demonstrates that the two nucleophilic thiols in ZnF2B (Cys-237, Cys-240) are not chemically equivalent in their reactivity to bromobimane or menadione, consistent with their unequal positioning near basic amino acids that affect thiol pKa, thereby rendering Cys-240 more reactive than Cys-237. These findings demonstrate important differential susceptibility of ER zinc finger cysteine residues to thiol reactions
Impact of Subsurface Thermal Anomalies on Air Temperatures in Idealized Scenarios Using PALM-4U
Mass transfer in eccentric binaries: the new Oil-on-Water SPH technique
To measure the onset of mass transfer in eccentric binaries we have developed
a two-phase SPH technique. Mass transfer is important in the evolution of close
binaries, and a key issue is to determine the separation at which mass transfer
begins. The circular case is well understood and can be treated through the use
of the Roche formalism. To treat the eccentric case we use a newly-developed
two phase system. The body of the donor star is made up from high-mass "water"
particles, whilst the atmosphere is modelled with low-mass "oil" particles.
Both sets of particles take part fully in SPH interactions. To test the
technique we model circular mass-transfer binaries containing a 0.6 Msun donor
star and a 1 Msun white dwarf; such binaries are thought to form cataclysmic
variable (CV) systems. We find that we can reproduce a reasonable CV
mass-transfer rate, and that our extended atmosphere gives a separation that is
too large by aproximately 16%, although its pressure scale height is
considerably exaggerated. We use the technique to measure the semi-major axis
required for the onset of mass transfer in binaries with a mass ratio of q=0.6
and a range of eccentricities. Comparing to the value obtained by considering
the instantaneous Roche lobe at pericentre we find that the radius of the star
required for mass transfer to begin decreases systematically with increasing
eccentricity.Comment: 9 pages, 8 figures, accepted by MNRA
Internal Crack Initiation and Growth Starting from Artificially Generated Defects in Additively Manufactured Ti6Al4V Specimen in the VHCF Regime
The aim of the present work was to investigate the āfine granular areaā (FGA) formation based on artificially generated internal defects in additively manufactured Ti6Al4V specimens in the early stage of fatigue crack growth in the āvery high cycle fatigueā (VHCF) regime. Fatigue tests were performed with constant amplitude at pure tension-compression loading (R = ā1) using an ultrasonic fatigue testing setup. Failed specimens were investigated using optical microscopy, high-resolution āscanning electron microscopyā (SEM), and āfocused ion beamā (FIB) techniques. Further, the paper introduces alternative proposals to identify the FGA layer beneath the fracture surfaces in terms of the ācross section polishingā (CSP) technique and metallic grindings with special attention paid to the crack origin, the surrounding microstructure, and the expansion of the nanograin layer beneath the fracture surface. Different existing fracture mechanical approaches were applied to evaluate if an FGA formation is possible. Moreover, the results were discussed in comparison to the experimental findings
The dialectical experience of the fear of missing out for U.S. American iGen emerging adult college students
FoMO, the fear of missing out, is a salient and significant experience with personal and relational consequences. This study qualitatively analyzed 35 interviews with iGen emerging adult college students about their experiences with FoMO. Framed by relational dialectics theory 2.0 (Baxter, L. A. (2011). Voicing relationships: A dialogic perspective. Sage), we found two relational-level contradictions, connection and disconnection and inclusion and exclusion, which are illuminated by the cultural-level interplay of the discourses of ācarpe diemā and āinvestment in the future.ā Findings indicate that through the discourse of carpe diem, participants attempt to increase the power awarded to relational and personal resources and expand what it means to invest in the future. Implications of these findings related to well-being and academic success are discussed and practical applications for institutions of higher education such as team-based learning and more holistic professional development programs are presented
A Case Study of Small Scale Structure Formation in 3D Supernova Simulations
It is suggested in observations of supernova remnants that a number of large-
and small-scale structures form at various points in the explosion.
Multidimensional modeling of core-collapse supernovae has been undertaken since
SN1987A, and both simulations and observations suggest/show that
Rayleigh-Taylor instabilities during the explosion is a main driver for the
formation of structure in the remnants.
We present a case study of structure formation in 3D in a \msol{15} supernova
for different parameters. We investigate the effect of moderate asymmetries and
different resolutions of the formation and morphology of the RT unstable
region, and take first steps at determining typical physical quantities (size,
composition) of arising clumps. We find that in this progenitor the major RT
unstable region develops at the He/OC interface for all cases considered. The
RT instabilities result in clumps that are overdense by 1-2 orders of magnitude
with respect to the ambient gas, have size scales on the level of a few % of
the remnant diameter, and are not diffused after the first yrs of the
remnant evolution, in the absence of a surrounding medium.Comment: 59 pages, 34 figure
In-situ observations of resident space objects with the CHEOPS space telescope
The CHaracterising ExOPlanet Satellite (CHEOPS) is a partnership between the European Space Agency and Switzerland with important contributions by 10 additional ESA member States. It is the first S-class mission in the ESA Science Programme. CHEOPS has been flying on a Sun-synchronous low Earth orbit since December 2019, collecting millions of short-exposure images in the visible domain to study exoplanet properties.
A small yet increasing fraction of CHEOPS images show linear trails caused by resident space objects crossing the instrument field of view. CHEOPSā orbit is indeed particularly favourable to serendipitously detect objects in its vicinity as the spacecraft rarely enters the Earth's shadow, sits at an altitude of 700 km, and observes with moderate phase angles relative to the Sun. This observing configuration is quite powerful, and it is complementary to optical observations from the ground.
To characterize the population of satellites and orbital debris observed by CHEOPS, all and every science images acquired over the past 3 years have been scanned with a Hough transform algorithm to identify the characteristic linear features that these objects cause on the images. Thousands of trails have been detected. This statistically significant sample shows interesting trends and features such as an increased occurrence rate over the past years as well as the fingerprint of the Starlink constellation. The cross-matching of individual trails with catalogued objects is underway as we aim to measure their distance at the time of observation and deduce the apparent magnitude of the detected objects.
As space agencies and private companies are developing new space-based surveillance and tracking activities to catalogue and characterize the distribution of small debris, the CHEOPS experience is timely and relevant. With the first CHEOPS mission extension currently running until the end of 2026, and a possible second extension until the end of 2029, the longer time coverage will make our dataset even more valuable to the community, especially for characterizing objects with recurrent crossings
- ā¦