7,176 research outputs found
Implications of Hadron Collider Observables on Parton Distribution Function Uncertainties
Standard parton distribution function sets do not have rigorously quantified
uncertainties. In recent years it has become apparent that these uncertainties
play an important role in the interpretation of hadron collider data. In this
paper, using the framework of statistical inference, we illustrate a technique
that can be used to efficiently propagate the uncertainties to new observables,
assess the compatibility of new data with an initial fit, and, in case the
compatibility is good, include the new data in the fit.Comment: 22 pages, 5 figure
Structure Functions in Deep Inelastic Lepton-Nucleon Scattering
Latest results on structure functions, as available at the Lepton-Photon
Symposium 1999, are presented. This report focusses on three experimental
areas: new structure function measurements, in particular from HERA at low x
and high Q2; results on light and heavy flavour densities; determinations of
the gluon distribution and of alpha_s. As the talk was delivered at a historic
moment and place, a few remarks were added recalling the exciting past and
looking into the promising future of deep inelastic scattering.Comment: 27 pages, latex, 15 figures, Talk at Lepton-Photon Symposium,
Stanford, August 199
Small x Behavior of Parton Distributions from the Observed Froissart Energy Dependence of the Deep Inelastic Scattering Cross Section
We fit the reduced cross section for deep-inelastic electron scattering data
to a three parameter ln^2 s fit, A + beta ln^2 (s/s_0), where s= [Q^2/x] (1-x)
+ m^2, and Q^2 is the virtuality of the exchanged photon. Over a wide range in
Q^2 (0.11 < Q^2 < 1200 GeV^2) all of the fits satisfy the logarithmic energy
dependence of the Froissart bound. We can use these results to extrapolate to
very large energies and hence to very small values of Bjorken x -- well beyond
the range accessible experimentally. As Q^2 --> infinity, the structure
function F_2^p(x, Q^2) exhibits Bjorken scaling, within experimental errors. We
obtain new constraints on the behavior of quark and antiquark distribution
functions at small x.Comment: 10 pages, 2 figure
Cascading Quivers from Decaying D-branes
We use an argument analogous to that of Kachru, Pearson and Verlinde to argue
that cascades in L^{a,b,c} quiver gauge theories always preserve the form of
the quiver, and that all gauge groups drop at each step by the number M of
fractional branes. In particular, we demonstrate that an NS5-brane that sweeps
out the S^3 of the base of L^{a,b,c} destroys M D3-branes.Comment: 11 pages, 1 figure; v2: references adde
On QCD -evolution of Deuteron Structure Function for
The deep-inelastic deuteron structure function (SF) in the
covariant approach in light-cone variables is considered. The and
-dependences of SF are calculated. The QCD analysis of generated data both
for non-cumulative ranges was performed. It was
shown that -evolution of SF is valid for ranges and
for the same value of QCD scale parameter . It was
found the -dependence of SF for the ranges is essentially different.Comment: LaTeX, 10 pages, 2 Postscript figure
Cumulative structure function in terms of nucleonic wave function of the nucleus
The structure function of the nucleus in the cumulative region is
studied in terms of nucleon degrees of freedom. At high the resulting
expressions are presented as a sum of contributions from few-nucleon
correlations. Two-nucleon correlations are studied in some detail. Spin
variables are averaged out. In the region the structure functions are
calculated for the relativistic interaction proposed by F.Gross {\it et al}.
They are found to fall with faster than the exponential. For Carbon at
, where the method is not rigorously applicable, they turn out to be
rougly twice larger than the experimental data.Comment: text and 2 figures in LaTex, 7 figures in P
On the pulsating strings in AdS_5 x T^{1,1}
We study the class of pulsating strings in AdS_5 x T^{1,1}. Using a
generalized ansatz for pulsating string configurations we find new solutions of
this class. Further we semiclassically quantize the theory and obtain the first
correction to the energy. The latter, due to AdS/CFT correspondence, is
supposed to give the anomalous dimensions of operators in the dual N=1
superconformal gauge field theory.Comment: 12 pages, improvements made, references adde
Dual giant gravitons in AdS Y (Sasaki-Einstein)
We consider BPS motion of dual giant gravitons on Ad where
represents a five-dimensional Sasaki-Einstein manifold. We find that the
phase space for the BPS dual giant gravitons is symplectically isomorphic to
the Calabi-Yau cone over , with the K\"{a}hler form identified with the
symplectic form. The quantization of the dual giants therefore coincides with
the K\"{a}hler quantization of the cone which leads to an explicit
correspondence between holomorphic wavefunctions of dual giants and
gauge-invariant operators of the boundary theory. We extend the discussion to
dual giants in where is a seven-dimensional
Sasaki-Einstein manifold; for special motions the phase space of the dual
giants is symplectically isomorphic to the eight-dimensional Calabi-Yau cone.Comment: 14 pages. (v2) typo's corrected; factors of AdS radius reinstated for
clarity; remarks about dual giant wavefunctions in T^{1,1} expanded and put
in a new subsectio
New parton distributions from large-x and low-Q^2 data
We report results of a new global next-to-leading order fit of parton
distribution functions in which cuts on W and Q are relaxed, thereby including
more data at high values of x. Effects of target mass corrections (TMCs),
higher twist contributions, and nuclear corrections for deuterium data are
significant in the large-x region. The leading twist parton distributions are
found to be stable to TMC model variations as long as higher twist
contributions are also included. The behavior of the d quark as x-->1 is
particularly sensitive to the deuterium corrections, and using realistic
nuclear smearing models the d-quark distribution at large x is found to be
softer than in previous fits performed with more restrictive cuts.Comment: 31 pages, 8 figures. Minor corrections. References added. To appear
in Phys.Rev.
Protein kinase CK2 is widely expressed in follicular, Burkitt and diffuse large B-cell lymphomas and propels malignant B-cell growth.
Serine-threonine kinase CK2 is highly expressed and pivotal for survival and proliferation in multiple myeloma, chronic lymphocytic leukemia and mantle cell lymphoma. Here, we investigated the expression of \u3b1 catalytic and \u3b2 regulatory CK2 subunits by immunohistochemistry in 57 follicular (FL), 18 Burkitt (BL), 52 diffuse large B-cell (DLBCL) non-Hodgkin lymphomas (NHL) and in normal reactive follicles. In silico evaluation of available Gene Expression Profile (GEP) data sets from patients and Western blot (WB) analysis in NHL cell-lines were also performed. Moreover, the novel, clinical-grade, ATP-competitive CK2-inhibitor CX-4945 (Silmitasertib) was assayed on lymphoma cells. CK2 was detected in 98.4% of cases with a trend towards a stronger CK2\u3b1 immunostain in BL compared to FL and DLBCL. No significant differences were observed between Germinal Center B (GCB) and non-GCB DLBCL types. GEP data and WB confirmed elevated CK2 mRNA and protein levels as well as active phosphorylation of specific targets in NHL cells. CX-4945 caused a dose-dependent growth-arresting effect on GCB, non-GCB DLBCL and BL cell-lines and it efficiently shut off phosphorylation of NF-\u3baB RelA and CDC37 on CK2 target sites. Thus, CK2 is highly expressed and could represent a suitable therapeutic target in BL, FL and DLBCL NHL
- …