11 research outputs found

    Conformational Control of Hydrogen-Bonded Aromatic Bis-Ureas

    No full text
    The phenylurea moiety is a ubiquitous synthon in supramolecular chemistry because it contains strong complementary hydrogen bonding groups and is synthetically very accessible. Here we investigate the possibility to strengthen self-association by conformational preorganization of the phenylurea moiety. In fact, we show that it is possible to strongly enhance intermolecular interactions between hydrogen bonded aromatic bis-ureas by substitution at the ortho positions of the phenylurea groups. Ortho substituents enforce a noncoplanar conformation of the urea and phenyl moieties better suited for hydrogen bonding. Substitution by methyl groups is more efficient than with larger groups, probably because of reduced steric hindrance. These effects have been demonstrated in the case of two different supramolecular architectures, which points to the probable generality of the phenomenon. In addition, this study has led to the discovery of a new bis-urea able to form very stable self-assembled nanotubes in toluene up to high temperatures (boiling point) or low concentrations (10–7 M) and in chloroform down to 3 Ɨ 10–4 M

    Engineering the Cavity of Self-Assembled Dynamic Nanotubes

    No full text
    By analogy with hydrogen-bonded molecular capsules, self-assembled nanotubes are of interest because they can temporarily isolate guest molecules from the solution. We show here that the stability of a particular bis-urea based dynamic self-assembled nanotube is related to the possibility for solvent molecules to fit inside the tubular cavity. The diameter of the cavity can be finely tuned by introducing a modified monomer in controlled amount

    Direct Probing of the Free-Energy Penalty for Helix Reversals and Chiral Mismatches in Chiral Supramolecular Polymers

    No full text
    The amplification of chirality, where a small imbalance in a chiral constituent is propagated into a strong optical purity, can occur in the spontaneous formation of helical 1-D stacks of molecules stabilized by hydrogen bonding, also known as supramolecular polymers. We have extended a statistical model by van Gestel et al. describing the highly nonlinear relationship between supramolecular helicity and enantiomeric excess for mixtures of enantiomers (the majority-rules effect) and quantitatively account for how this affects the thermodynamic stability of the assemblies. Our method allows for a direct comparison with experimental data, providing an unambiguous determination of the key parameters of the model (i.e., the mismatch and the helix reversal penalties). We demonstrate the successful application of this model to calorimetry data for bis-urea-based helical nanotubes, showing that reversals in the handedness of these nanotubes are not all that rare even though the helix reversal penalty is fairly large. By contrast, the mismatch penalty we obtain is small, implying that a large proportion of enantiomers are present in tube fractions not of their preferred handedness

    Two-Component Self-Assemblies: Investigation of a Synergy between Bisurea Stickers

    Get PDF
    It is of interest to develop two-component systems for added flexibility in the design of supramolecular polymers, nanofibers, or organogels. Bisureas are known to self-assemble by hydrogen bonding into long supramolecular objects. We show here that mixing aromatic bisureas with slightly different structures can yield surprisingly large synergistic effects. A strong increase in viscosity is observed when a bisurea with the sterically demanding 2,4,6-trimethylbenzene spacer is combined with a bisurea bearing no methyl group in position 2 of the aromatic spacer (i.e., 4-methylbenzene or 4,6-dimethylbenzene). This effect is the consequence of a change in the supramolecular assembly triggered by the composition of the mixture. The mixture of complementary bisureas forms rodlike objects that are more stable by about 1 kJ/mol and that are thicker than the rodlike objects formed by both parent systems

    Structural Control of Bisurea-Based Supramolecular Polymers: Influence of an Ester Moiety

    No full text
    A few examples of monomers are known that self-assemble into various high molar mass structures in solution. Controlling the morphology of the resulting supramolecular polymers is a highly desirable goal for many applications. Herein, we compare the self-assembling properties of newly prepared ester bisurea monomers with those of previously investigated alkyl bisurea monomers. The ester functionality decreases the hydrogen bonding strength of the bisurea monomers but does not prevent the formation of long assemblies in nonpolar solvents: gels are formed at millimolar concentration. Surprisingly, ester bisureas self-assemble at room temperature into rod-like urea-bonded supramolecular polymers that are different from the ones formed by alkyl bisureas. The rods formed by ester bisurea supramolecular polymers are compact (instead of tubular in the case of alkyl bisureas) and display two monomers in the cross-section (instead of three in the case of alkyl bisureas). The stability of the structures formed by ester bisureas can be easily tuned by changing the nature of the substituent in the α-position of the urea functions and/or the nature of the alkyl side chains

    Structure and Dynamics of a Bisurea-Based Supramolecular Polymer in <i>n</i>-Dodecane

    No full text
    The structure and dynamics of a supramolecular polymer formed by a bisurea-type compound, 2,4-bis(2-ethylhexylureido)toluene (EHUT), in an apolar solvent, n-dodecane (C12), were examined in detail. The EHUT/C12 organo-gel system forms long, dynamic chain-like supramolecular polymers, which lead to an entangled network showing remarkable viscoelastic behavior with two major relaxation modes. A slow relaxation mode with an approximately constant relaxation time, τS, was observed in a flow region and the other, fast, relaxation mode with a time τF1 (S) was observed in a high-frequency range. Because no dielectric relaxation behavior was observed over a frequency region including the mechanical τS and τF1 relaxation modes, the formed supramolecular polymer does not possess any total dipole moment due to antiparallel intermolecular hydrogen bonding of the two ureido groups of each EHUT unit. A structural model for the supramolecular polymer formed in EHUT/C12 is proposed based on force-field simulations. This proposed model is consistent with all the experimental data concerning this system: flow birefringence measurements, dielectric spectroscopy, SANS, and FTIR

    The Weak Help the Strong: Low-Molar-Mass Organogelators Harden Bitumen

    No full text
    Low-molar-mass organogelators (LMOG) can turn liquids into thermoreversible gels because they self-assemble into a fibrous network. In contrast, using the same kind of low-molar-mass additives to harden materials, which are already solidlike on their own, has been hardly exploited. We show here that simple dicarboxylic acids are very efficient low-molar-mass organogelators (LMOG) for bitumen. Indeed, they increase the range of temperature where bitumen is a solid. Moreover, the hardness and elastic modulus of bitumen at room temperature are also improved. This concept of improving the mechanical properties of a solid with an LMOG can probably be applied to other materials

    Supramolecular Balance: Using Cooperativity To Amplify Weak Interactions

    No full text
    Gathering precise knowledge on weak supramolecular interactions is difficult yet is of utmost importance for numerous scientific fields, including catalysis, crystal engineering, ligand binding, and protein folding. We report on a combined theoretical and experimental approach showing that it is possible to vastly improve the sensitivity of current methods to probe weak supramolecular interactions in solution. The concept consists of using a supramolecular platform involving a highly cooperative configurational transition, the perturbation of which (by the modification of the molecular building blocks) can be monitored in a temperature scanning experiment. We tested this concept with a particular bisurea platform, and our first results show that it is possible to detect the presence of interaction differences as low as 60 J/mol, which may be due to steric repulsion between vinyl and alkyl groups or may be the result of solvation effects

    Consequences of a Single Double Bond within a Side Group on the Ordering of Supramolecular Polymers

    No full text
    By combining atomic force microscopy experiments and full-atomistic computer simulations, we compared the two-dimensional ordering dynamics of two variants of supramolecular polymers of bis-urea molecules which differed only by a single <i>cis</i>-double bond in their side groups. At early stages of ordering, the double bonds favored kinks at the level of individual molecules, which induced transient steric constraints hindering the spontaneous formation of long supramolecular polymers. In addition, due to these kinks, molecule–substrate interactions were disturbed. At later stages, however, due to a progressively increasing number of established directional hydrogen bonds between molecules, the self-assembly process improved and thereby increased the length of the supramolecular polymers. Large domains of micrometer-long and aligned supramolecular polymers were formed, epitaxially guided by the graphite substrate and having a constant width consistent with the length of the molecule. Thus, introducing flexible (kinked) side chains can reduce the nucleation probability and slow the growth of supramolecular polymers due to incommensurablility with the crystalline substrate. Such an elementary control of nucleation and growth via the introduction of a single double bond represents a powerful pathway for the formation of large ordered domains of aligned one-dimensional supramolecular polymers

    Conformational Plasticity of Hydrogen Bonded Bis-urea Supramolecular Polymers

    No full text
    We report a detailed structural investigation of supramolecular polymers formed by hydrogen bonded self-assembly of bis-urea monomers. The careful exploration of the energy landscape by molecular mechanics/molecular dynamics (MM/MD) simulations has allowed us to identify three distinct self-assembled structures of similar stabilities. These structures have been compared to X-ray crystal data. We observe that a slight change in the molecular structure can favor a particular structure over the others. Detailed analysis shows that hydrogen bonds stabilize all three structures to a similar extent. Therefore, it is the interactions among the lateral substituents, and with the filament environment, that are the decisive factors in the competition between the possible self-assembled structures. This study constitutes a clear reminder that the conformation of a supramolecular polymer is a sensitive function of the molecular structure and may significantly differ from the solid-state conformation of a model compound
    corecore