3,702 research outputs found
Test-beam measurements of instrumented sensor planes for a highly compact and granular electromagnetic calorimeter
The LUXE experiment is designed to explore the strong-field QED regime in interactions of high-energy electrons from the European XFEL in a powerful laser field. One of the crucial aims of this experiment is to measure the production of electron-positron pairs as a function of the laser field strength where non-perturbative effects are expected to kick in above the Schwinger limit. For the positron energy measurements and multiplicity spectra, a tracker and an electromagnetic calorimeter are foreseen. Since the expected number of positrons varies over five orders of magnitude, and has to be measured over a widely spread low energy background, the calorimeter must be compact and finely segmented. The concept of a sandwich calorimeter made of tungsten absorber plates interspersed with thin sensor planes is developed. The sensor planes comprise a silicon pad sensor, flexible kapton printed circuit planes for bias voltage supply and signal transport to the sensor edge, all embedded in a carbon fibre support. The thickness of a sensor plane is less than 1 mm. As an alternative, gallium arsenide sensors are considered with integrated readout strips. Prototypes of both sensor planes were studied in an electron beam of 5 GeV at DESY. Results from this test beam are presented on the sensor response homogeneity, edge effects, signal sharing and embedded trace effect
The Detection of Ionizing Radiation by Plasma Panel Sensors: Cosmic Muons, Ion Beams and Cancer Therapy
The plasma panel sensor is an ionizing photon and particle radiation detector
derived from PDP technology with high gain and nanosecond response.
Experimental results in detecting cosmic ray muons and beta particles from
radioactive sources are described along with applications including high energy
and nuclear physics, homeland security and cancer therapeuticsComment: Presented at SID Symposium, June 201
Plasma Panel Sensors for Particle and Beam Detection
The plasma panel sensor (PPS) is an inherently digital, high gain, novel
variant of micropattern gas detectors inspired by many operational and
fabrication principles common to plasma display panels (PDPs). The PPS is
comprised of a dense array of small, plasma discharge, gas cells within a
hermetically-sealed glass panel, and is assembled from non-reactive,
intrinsically radiation-hard materials such as glass substrates, metal
electrodes and mostly inert gas mixtures. We are developing the technology to
fabricate these devices with very low mass and small thickness, using gas gaps
of at least a few hundred micrometers. Our tests with these devices demonstrate
a spatial resolution of about 1 mm. We intend to make PPS devices with much
smaller cells and the potential for much finer position resolutions. Our PPS
tests also show response times of several nanoseconds. We report here our
results in detecting betas, cosmic-ray muons, and our first proton beam tests.Comment: 2012 IEEE NS
Position resolution and efficiency measurements with large scale Thin Gap Chambers for the super LHC
New developments in Thin Gap Chambers (TGC) detectors to provide fast trigger
and high precision muon tracking under sLHC conditions are presented. The
modified detectors are shown to stand a high total irradiation dose equivalent
to 6 Coulomb/cm of wire, without showing any deterioration in their
performance. Two large (1.2 x 0.8 m^2) prototypes containing four gaps, each
gap providing pad, strips and wires readout, with a total thickness of 50 mm,
have been constructed. Their local spatial resolution has been measured in a
100 GeV/c muon test beam at CERN. At perpendicular incidence angle, single gap
position resolution better than 60 microns has been obtained. For incidence
angle of 20 degrees resolution of less than 100 micron was achieved. TGC
prototypes were also tested under a flux of 10^5 Hz/cm^2 of 5.5-6.5 MeV
neutrons, showing a high efficiency for cosmic muons detection.Comment: Presented at the 12 Vienna conference on Instrumentation, February
201
Development of a plasma panel radiation detector: recent progress and key issues
A radiation detector based on plasma display panel technology, which is the
principal component of plasma television displays is presented. Plasma Panel
Sensor (PPS) technology is a variant of micropattern gas radiation detectors.
The PPS is conceived as an array of sealed plasma discharge gas cells which can
be used for fast response (O(5ns) per pixel), high spatial resolution detection
(pixel pitch can be less than 100 micrometer) of ionizing and minimum ionizing
particles. The PPS is assembled from non-reactive, intrinsically radiation-hard
materials: glass substrates, metal electrodes and inert gas mixtures. We report
on the PPS development program, including simulations and design and the first
laboratory studies which demonstrate the usage of plasma display panels in
measurements of cosmic ray muons, as well as the expansion of experimental
results on the detection of betas from radioactive sources.Comment: presented at IEEE NSS 2011 (Barcelona
73.1: Large‐Area Plasma‐Panel Radiation Detectors for Nuclear Medicine Imaging to Homeland Security and the Super Large Hadron Collider
A new radiation sensor derived from plasma panel display technology is introduced. It has the capability to detect ionizing and non‐ionizing radiation over a wide energy range and the potential for use in many applications. The principle of operation is described and some early results presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92058/1/1.3499840.pd
Plasma panel‐based radiation detectors
The plasma panel sensor (PPS) is a gaseous micropattern radiation detector under current development. It has many operational and fabrication principles common to plasma display panels. It comprises a dense matrix of small, gas plasma discharge cells within a hermetically sealed panel. As in plasma display panels, it uses nonreactive, intrinsically radiation‐hard materials such as glass substrates, refractory metal electrodes, and mostly inert gas mixtures. We are developing these devices primarily as thin, low‐mass detectors with gas gaps from a few hundred microns to a few millimeters. The PPS is a high gain, inherently digital device with the potential for fast response times, fine position resolution (<50‐µm RMS) and low cost. In this paper, we report on prototype PPS experimental results in detecting betas, protons, and cosmic muons, and we extrapolate on the PPS potential for applications including the detection of alphas, heavy ions at low‐to‐medium energy, thermal neutrons, and X‐rays.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98325/1/jsid151.pd
Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data
A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
- …