8 research outputs found

    Probing vectorial near field of light: imaging theory and design principles of nanoprobes

    No full text
    Near-field microscopy is widely used for characterizing electromagnetic fields at nanoscale, where nanoprobes afford the opportunity to extract subwavelength optical quantities, including the amplitude, phase, polarization and chirality. However, owing to the complexity of various nanoprobes, a general and intuitive theory is highly needed to assess the vectorial field response of the nanoprobes and interpret the mechanism of the probe-field interaction. Here, we develop a general imaging theory based on the reciprocity of electromagnetism and multipole expansion analysis. The proposed theory closely resembles the multipolar Hamiltonian for light-matter interaction energy, revealing the coupling mechanism of the probe-field interaction. Based on this theory, we introduce a new paradigm for the design of functional nanoprobes by analyzing the reciprocal dipole moments, and establish effective design principles for the imaging of vectorial near fields. Moreover, we numerically analyze the responses of two typical probes, which can quantitatively reproduce and well explain the experimental results of previously reported measurements of optical magnetism and transverse spin angular momentum. Our work provides a powerful tool for the design and analysis of new functional probes that may enable the probing of various physical quantities of the vectorial near field

    Incoherent Optoelectronic Differentiation with Optimized Multilayer Films

    No full text
    Fourier-based optical computing operations, such as spatial differentiation, have recently been realized in compact form factors using flat optics. Experimental demonstrations, however, have been limited to coherent light requiring laser illumination and leading to speckle noise and unwanted interference fringes. Here, we demonstrate the use of optimized multilayer films, combined with dual color image subtraction, to realize differentiation with unpolarized incoherent light. Global optimization is achieved by employing neural networks combined with the reconciled level set method to optimize the optical transfer functions of multilayer films at wavelengths of 532 nm and 633 nm. Spatial differentiation is then achieved by subtracting the normalized incoherent images at these two wavelengths. The optimized multilayer films are experimentally demonstrated to achieve incoherent differentiation with a numerical aperture up to 0.8 and a resolution of 6.2 {\mu}m. The use of multilayer films allows for lithography-free fabrication and is easily combined with existing imaging systems opening the door to applications in microscopy, machine vision and other image processing applications

    Broadband High-Performance Infrared Antireflection Nanowires Facilely Grown on Ultrafast Laser Structured Cu Surface

    No full text
    Infrared antireflection is an essential issue in many fields such as thermal imaging, sensors, thermoelectrics, and stealth. However, a limited antireflection capability, narrow effective band, and complexity as well as high cost in implementation represent the main unconquered problems, especially on metal surfaces. By introducing precursor micro/nano structures via ultrafast laser beforehand, we present a novel approach for facile and uniform growth of high-quality oxide semiconductor nanowires on a Cu surface via thermal oxidation. Through the enhanced optical phonon dissipation of the nanowires, assisted by light trapping in the micro structures, ultralow total reflectance of 0.6% is achieved at the infrared wavelength around 17 μm and keeps steadily below 3% over a broad band of 14–18 μm. The precursor structures and the nanowires can be flexibly tuned by controlling the laser processing procedure to achieve desired antireflection performance. The presented approach possesses the advantages of material simplicity, structure reconfigurability, and cost-effectiveness for mass production. It opens a new path to realize unique functions by integrating semiconductor nanowires onto metal surface structures

    Local Field Asymmetry Drives Second-Harmonic Generation in Noncentrosymmetric Nanodimers

    No full text
    We demonstrate that second-harmonic generation (SHG) from arrays of noncentrosymmetric T-shaped gold nanodimers with a nanogap arises from asymmetry in the local fundamental field distribution and is not related strictly to nanogap size. Calculations show that the local field contains orthogonal polarization components not present in the exciting field, which yield the dominant SHG response. The strongest SHG responses occur through the local surface susceptibility of the particles for a fundamental field distributed asymmetrically at the particle perimeters. Weak responses result from more symmetric distributions despite high field enhancement in the nanogap. Nearly constant field enhancement persists for relatively large nanogap sizes

    Dispersionless Phase Discontinuities for Controlling Light Propagation

    No full text
    Ultrathin metasurfaces consisting of a monolayer of subwavelength plasmonic resonators are capable of generating local abrupt phase changes and can be used for controlling the wavefront of electromagnetic waves. The phase change occurs for transmitted or reflected wave components whose polarization is orthogonal to that of a linearly polarized (LP) incident wave. As the phase shift relies on the resonant features of the plasmonic structures, it is in general wavelength-dependent. Here, we investigate the interaction of circularly polarized (CP) light at an interface composed of a dipole antenna array to create spatially varying abrupt phase discontinuities. The phase discontinuity is dispersionless, that is, it solely depends on the orientation of dipole antennas, but not their spectral response and the wavelength of incident light. By arranging the antennas in an array with a constant phase gradient along the interface, the phenomenon of broadband anomalous refraction is observed ranging from visible to near-infrared wavelengths. We further design and experimentally demonstrate an ultrathin phase gradient interface to generate a broadband optical vortex beam based on the above principle

    Super-Resolution Exciton Imaging of Nanobubbles in 2D Semiconductors with Near-Field Nanophotoluminescence Microscopy

    No full text
    Two-dimensional (2D) semiconductors, such as transition metal dichalcogenides, have emerged as important candidate materials for next-generation chip-scale optoelectronic devices with the development of large-scale production techniques, such as chemical vapor deposition (CVD). However, 2D materials need to be transferred to other target substrates after growth, during which various micro- and nanoscale defects, such as nanobubbles, are inevitably generated. These nanodefects not only influence the uniformity of 2D semiconductors but also may significantly alter the local optoelectronic properties of the composed devices. Hence, super-resolution discrimination and characterization of nanodefects are highly demanded. Here, we report a near-field nanophotoluminescence (nano-PL) microscope that can quickly screen nanobubbles and investigate their impact on local excitonic properties of 2D semiconductors by directly visualize the PL emission distribution with a very high spatial resolution of ∼10 nm, far below the optical diffraction limit, and a high speed of 10 ms/point under ambient conditions. By using nano-PL microscopy to map the exciton and trion emission intensity distributions in transferred CVD-grown monolayer tungsten disulfide (1L-WS2) flakes, it is found that the PL intensity decreases by 13.4% as the height of the nanobubble increases by every nanometer, which is mainly caused by the suppression of trion emission due to the strong doping effect from the substrate. In addition to the nanobubbles, other types of nanodefects, such as cracks, stacks, and grain boundaries, can also be characterized. The nano-PL method is proven to be a powerful tool for the nondestructive quality inspection of nanodefects as well as the super-resolution exploration of local optoelectronic properties of 2D materials

    Reconfigurable Metasurface for Image Processing

    No full text
    Optical Fourier transform-based processing is an attractive technique due to the fast processing times and large-data rates. Furthermore, it has recently been demonstrated that certain Fourier-based processors can be realized in compact form factors using flat optics. The flat optics, however, have been demonstrated as static filters where the operator is fixed, limiting the applicability of the approach. Here, we demonstrate a reconfigurable metasurface that can be dynamically tuned to provide a range of processing modalities including bright-field imaging, low-pass and high-pass filtering, and second-order differentiation. The dynamically tunable metasurface can be directly combined with standard coherent imaging systems and operates with a numerical aperture up to 0.25 and over a 60 nm bandwidth. The ability to dynamically control light in the wave vector domain, while doing so in a compact form factor, may open new doors to applications in microscopy, machine vision, and sensing

    All-Optical Reconfigurable Excitonic Charge States in Monolayer MoS<sub>2</sub>

    No full text
    Excitons are quasi-particles composed of electron–hole pairs through Coulomb interaction. Due to the atomic-thin thickness, they are tightly bound in monolayer transition metal dichalcogenides (TMDs) and dominate their optical properties. The capability to manipulate the excitonic behavior can significantly influence the photon emission or carrier transport performance of TMD-based devices. However, on-demand and region-selective manipulation of the excitonic states in a reversible manner remains challenging so far. Herein, harnessing the coordinated effect of femtosecond-laser-driven atomic defect generation, interfacial electron transfer, and surface molecular desorption/adsorption, we develop an all-optical approach to manipulate the charge states of excitons in monolayer molybdenum disulfide (MoS2). Through steering the laser beam, we demonstrate reconfigurable optical encoding of the excitonic charge states (between neutral and negative states) on a single MoS2 flake. Our technique can be extended to other TMDs materials, which will guide the design of all-optical and reconfigurable TMD-based optoelectronic and nanophotonic devices
    corecore