74 research outputs found
Towards Stratification Learning through Homology Inference
A topological approach to stratification learning is developed for point
cloud data drawn from a stratified space. Given such data, our objective is to
infer which points belong to the same strata. First we define a multi-scale
notion of a stratified space, giving a stratification for each radius level. We
then use methods derived from kernel and cokernel persistent homology to
cluster the data points into different strata, and we prove a result which
guarantees the correctness of our clustering, given certain topological
conditions; some geometric intuition for these topological conditions is also
provided. Our correctness result is then given a probabilistic flavor: we give
bounds on the minimum number of sample points required to infer, with
probability, which points belong to the same strata. Finally, we give an
explicit algorithm for the clustering, prove its correctness, and apply it to
some simulated data.Comment: 48 page
Homology and Robustness of Level and Interlevel Sets
Given a function f: \Xspace \to \Rspace on a topological space, we consider
the preimages of intervals and their homology groups and show how to read the
ranks of these groups from the extended persistence diagram of . In
addition, we quantify the robustness of the homology classes under
perturbations of using well groups, and we show how to read the ranks of
these groups from the same extended persistence diagram. The special case
\Xspace = \Rspace^3 has ramifications in the fields of medical imaging and
scientific visualization
Geometric Cross-Modal Comparison of Heterogeneous Sensor Data
In this work, we address the problem of cross-modal comparison of aerial data
streams. A variety of simulated automobile trajectories are sensed using two
different modalities: full-motion video, and radio-frequency (RF) signals
received by detectors at various locations. The information represented by the
two modalities is compared using self-similarity matrices (SSMs) corresponding
to time-ordered point clouds in feature spaces of each of these data sources;
we note that these feature spaces can be of entirely different scale and
dimensionality. Several metrics for comparing SSMs are explored, including a
cutting-edge time-warping technique that can simultaneously handle local time
warping and partial matches, while also controlling for the change in geometry
between feature spaces of the two modalities. We note that this technique is
quite general, and does not depend on the choice of modalities. In this
particular setting, we demonstrate that the cross-modal distance between SSMs
corresponding to the same trajectory type is smaller than the cross-modal
distance between SSMs corresponding to distinct trajectory types, and we
formalize this observation via precision-recall metrics in experiments.
Finally, we comment on promising implications of these ideas for future
integration into multiple-hypothesis tracking systems.Comment: 10 pages, 13 figures, Proceedings of IEEE Aeroconf 201
- …
