41 research outputs found
Ultra High Throughput Sequencing in Human DNA Variation Detection: A Comparative Study on the NDUFA3-PRPF31 Region
BACKGROUND: Ultra high throughput sequencing (UHTS) technologies find an important application in targeted resequencing of candidate genes or of genomic intervals from genetic association studies. Despite the extraordinary power of these new methods, they are still rarely used in routine analysis of human genomic variants, in part because of the absence of specific standard procedures. The aim of this work is to provide human molecular geneticists with a tool to evaluate the best UHTS methodology for efficiently detecting DNA changes, from common SNPs to rare mutations. METHODOLOGY/PRINCIPAL FINDINGS: We tested the three most widespread UHTS platforms (Roche/454 GS FLX Titanium, Illumina/Solexa Genome Analyzer II and Applied Biosystems/SOLiD System 3) on a well-studied region of the human genome containing many polymorphisms and a very rare heterozygous mutation located within an intronic repetitive DNA element. We identify the qualities and the limitations of each platform and describe some peculiarities of UHTS in resequencing projects. CONCLUSIONS/SIGNIFICANCE: When appropriate filtering and mapping procedures are applied UHTS technology can be safely and efficiently used as a tool for targeted human DNA variations detection. Unless particular and platform-dependent characteristics are needed for specific projects, the most relevant parameter to consider in mainstream human genome resequencing procedures is the cost per sequenced base-pair associated to each machine
Subtle changes in chromatin loop contact propensity are associated with differential gene regulation and expression.
While genetic variation at chromatin loops is relevant for human disease, the relationships between contact propensity (the probability that loci at loops physically interact), genetics, and gene regulation are unclear. We quantitatively interrogate these relationships by comparing Hi-C and molecular phenotype data across cell types and haplotypes. While chromatin loops consistently form across different cell types, they have subtle quantitative differences in contact frequency that are associated with larger changes in gene expression and H3K27ac. For the vast majority of loci with quantitative differences in contact frequency across haplotypes, the changes in magnitude are smaller than those across cell types; however, the proportional relationships between contact propensity, gene expression, and H3K27ac are consistent. These findings suggest that subtle changes in contact propensity have a biologically meaningful role in gene regulation and could be a mechanism by which regulatory genetic variants in loop anchors mediate effects on expression
Recommended from our members
Mutational screening of splicing factor genes in cases with autosomal dominant retinitis pigmentosa
Purpose Mutations in genes encoding proteins from the tri-snRNP complex of the spliceosome account for more than 12% of cases of autosomal dominant retinitis pigmentosa (adRP). Although the exact mechanism by which splicing factor defects trigger photoreceptor death is not completely clear, their role in retinitis pigmentosa has been demonstrated by several genetic and functional studies. To test for possible novel associations between splicing factors and adRP, we screened four tri-snRNP splicing factor genes (EFTUD2, PRPF4, NHP2L1, and AAR2) as candidate disease genes. Methods: We screened up to 303 patients with adRP from Europe and North America who did not carry known RP mutations. Exon-PCR and Sanger methods were used to sequence the NHP2L1 and AAR2 genes, while the sequences of EFTUD2 and PRPF4 were obtained by using long-range PCRs spanning coding and non-coding regions followed by next-generation sequencing. Results: We detected novel missense changes in individual patients in the sequence of the genes PRPF4 and EFTUD2, but the role of these changes in relationship to disease could not be verified. In one other patient we identified a novel nucleotide substitution in the 5′ untranslated region (UTR) of NHP2L1, which did not segregate with the disease in the family. Conclusions: The absence of clearly pathogenic mutations in the candidate genes screened in our cohort suggests that EFTUD2, PRPF4, NHP2L1, and AAR2 are either not involved in adRP or are associated with the disease in rare instances, at least as observed in this study in patients of European and North American origin
Recommended from our members
Allele-specific NKX2-5 binding underlies multiple genetic associations with human electrocardiographic traits.
The cardiac transcription factor (TF) gene NKX2-5 has been associated with electrocardiographic (EKG) traits through genome-wide association studies (GWASs), but the extent to which differential binding of NKX2-5 at common regulatory variants contributes to these traits has not yet been studied. We analyzed transcriptomic and epigenomic data from induced pluripotent stem cell-derived cardiomyocytes from seven related individuals, and identified ~2,000 single-nucleotide variants associated with allele-specific effects (ASE-SNVs) on NKX2-5 binding. NKX2-5 ASE-SNVs were enriched for altered TF motifs, for heart-specific expression quantitative trait loci and for EKG GWAS signals. Using fine-mapping combined with epigenomic data from induced pluripotent stem cell-derived cardiomyocytes, we prioritized candidate causal variants for EKG traits, many of which were NKX2-5 ASE-SNVs. Experimentally characterizing two NKX2-5 ASE-SNVs (rs3807989 and rs590041) showed that they modulate the expression of target genes via differential protein binding in cardiac cells, indicating that they are functional variants underlying EKG GWAS signals. Our results show that differential NKX2-5 binding at numerous regulatory variants across the genome contributes to EKG phenotypes
Recommended from our members
Type 1 diabetes risk genes mediate pancreatic beta cell survival in response to proinflammatory cytokines
Publisher Copyright: © 2022We combined functional genomics and human genetics to investigate processes that affect type 1 diabetes (T1D) risk by mediating beta cell survival in response to proinflammatory cytokines. We mapped 38,931 cytokine-responsive candidate cis-regulatory elements (cCREs) in beta cells using ATAC-seq and snATAC-seq and linked them to target genes using co-accessibility and HiChIP. Using a genome-wide CRISPR screen in EndoC-βH1 cells, we identified 867 genes affecting cytokine-induced survival, and genes promoting survival and up-regulated in cytokines were enriched at T1D risk loci. Using SNP-SELEX, we identified 2,229 variants in cytokine-responsive cCREs altering transcription factor (TF) binding, and variants altering binding of TFs regulating stress, inflammation, and apoptosis were enriched for T1D risk. At the 16p13 locus, a fine-mapped T1D variant altering TF binding in a cytokine-induced cCRE interacted with SOCS1, which promoted survival in cytokine exposure. Our findings reveal processes and genes acting in beta cells during inflammation that modulate T1D risk.Peer reviewe
iPSCORE: A Resource of 222 iPSC Lines Enabling Functional Characterization of Genetic Variation across a Variety of Cell Types.
Large-scale collections of induced pluripotent stem cells (iPSCs) could serve as powerful model systems for examining how genetic variation affects biology and disease. Here we describe the iPSCORE resource: a collection of systematically derived and characterized iPSC lines from 222 ethnically diverse individuals that allows for both familial and association-based genetic studies. iPSCORE lines are pluripotent with high genomic integrity (no or low numbers of somatic copy-number variants) as determined using high-throughput RNA-sequencing and genotyping arrays, respectively. Using iPSCs from a family of individuals, we show that iPSC-derived cardiomyocytes demonstrate gene expression patterns that cluster by genetic background, and can be used to examine variants associated with physiological and disease phenotypes. The iPSCORE collection contains representative individuals for risk and non-risk alleles for 95% of SNPs associated with human phenotypes through genome-wide association studies. Our study demonstrates the utility of iPSCORE for examining how genetic variants influence molecular and physiological traits in iPSCs and derived cell lines
Network-Guided Analysis of Genes with Altered Somatic Copy Number and Gene Expression Reveals Pathways Commonly Perturbed in Metastatic Melanoma
Cancer genomes frequently contain somatic copy number alterations (SCNA) that can significantly perturb the expression level of affected genes and thus disrupt pathways controlling normal growth. In melanoma, many studies have focussed on the copy number and gene expression levels of the BRAF, PTEN and MITF genes, but little has been done to identify new genes using these parameters at the genome-wide scale. Using karyotyping, SNP and CGH arrays, and RNA-seq, we have identified SCNA affecting gene expression (‘SCNA-genes’) in seven human metastatic melanoma cell lines. We showed that the combination of these techniques is useful to identify candidate genes potentially involved in tumorigenesis. Since few of these alterations were recurrent across our samples, we used a protein network-guided approach to determine whether any pathways were enriched in SCNA-genes in one or more samples. From this unbiased genome-wide analysis, we identified 28 significantly enriched pathway modules. Comparison with two large, independent melanoma SCNA datasets showed less than 10% overlap at the individual gene level, but network-guided analysis revealed 66% shared pathways, including all but three of the pathways identified in our data. Frequently altered pathways included WNT, cadherin signalling, angiogenesis and melanogenesis. Additionally, our results emphasize the potential of the EPHA3 and FRS2 gene products, involved in angiogenesis and migration, as possible therapeutic targets in melanoma. Our study demonstrates the utility of network-guided approaches, for both large and small datasets, to identify pathways recurrently perturbed in cancer