7,006 research outputs found

    Cinchona-Derived Picolinamides: Effective Organocatalysts for Stereoselective Imine Hydrosilylation

    Get PDF
    Picolinamide-cinchona organocatalysts for the successful enantioselective reduction of ketomines were developed. For the first time, a new type of chiral Lewis base, a cationic species, is reported to efficiently organocatalyze the addition of trichlorosilane to imines. Excellent yields with good to high enantioselectivities (up to 91%) were obtained in the reduction of differently substituted substrates. Noteworthy, remarkably high turnover frequencies for the hydrosilylation of imines were observed; the catalyst of choice proved to be active even at a loading of only 1 mol-%. The loading was further reduced to 0.5 mol-%, and for very short reaction times (15 min) very impressive asymmetric catalyst efficiency speed values were reached

    Stereoselective Reaction of 2-Carboxythioesters-1,3-dithiane with Nitroalkenes: An Organocatalytic Strategy for the Asymmetric Addition of a Glyoxylate Anion Equivalent.

    Get PDF
    Under mild reaction conditions γ-nitro-β-aryl-ι-keto esters with up to 92% ee were obtained, realizing a formal catalytic stereoselective conjugate addition of the glyoxylate anion synthon

    Sub-10 ps time tagging of electromagnetic showers with scintillating glasses and SiPMs

    Full text link
    The high energy physics community has recently identified an e+e−e^+e^- Higgs factory as one of the next-generation collider experiments, following the completion of the High Luminosity LHC program at CERN.The moderate radiation levels expected at such colliders compared to hadron colliders, enable the use of less radiation tolerant but cheaper technologies for the construction of the particle detectors. This opportunity has triggered a renewed interest in the development of scintillating glasses for the instrumentation of large detector volumes such as homogeneous calorimeters. While the performance of such scintillators remains typically inferior in terms of light yield and radiation tolerance compared to that of many scintillating crystals, substantial progress has been made over the recent years. In this paper we discuss the time resolution of cerium-doped Alkali Free Fluorophosphate scintillating glasses, read-out with silicon photo-multipliers in detecting single charged tracks and at different positions along the longitudinal development of an electromagnetic shower, using respectively 150~GeV pions and 100~GeV electron beams at the CERN SPS H2 beam line. A single sensor time resolution of 14.4~ps and 5-7~ps was measured respectively in the two cases. With such a performance the present technology has the potential to address an emerging requirement of future detectors at collider experiments: measuring the time-of-flight of single charged particles as well as that of neutral particles showering inside the calorimeter and the time development of showers

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore