2,679 research outputs found

    Diffusion-Limited One-Species Reactions in the Bethe Lattice

    Full text link
    We study the kinetics of diffusion-limited coalescence, A+A-->A, and annihilation, A+A-->0, in the Bethe lattice of coordination number z. Correlations build up over time so that the probability to find a particle next to another varies from \rho^2 (\rho is the particle density), initially, when the particles are uncorrelated, to [(z-2)/z]\rho^2, in the long-time asymptotic limit. As a result, the particle density decays inversely proportional to time, \rho ~ 1/kt, but at a rate k that slowly decreases to an asymptotic constant value.Comment: To be published in JPCM, special issue on Kinetics of Chemical Reaction

    Exact mean first-passage time on the T-graph

    Full text link
    We consider a simple random walk on the T-fractal and we calculate the exact mean time Ď„g\tau^g to first reach the central node i0i_0. The mean is performed over the set of possible walks from a given origin and over the set of starting points uniformly distributed throughout the sites of the graph, except i0i_0. By means of analytic techniques based on decimation procedures, we find the explicit expression for Ď„g\tau^g as a function of the generation gg and of the volume VV of the underlying fractal. Our results agree with the asymptotic ones already known for diffusion on the T-fractal and, more generally, they are consistent with the standard laws describing diffusion on low-dimensional structures.Comment: 6 page

    Wigner Surmise For Domain Systems

    Full text link
    In random matrix theory, the spacing distribution functions p(n)(s)p^{(n)}(s) are well fitted by the Wigner surmise and its generalizations. In this approximation the spacing functions are completely described by the behavior of the exact functions in the limits s->0 and s->infinity. Most non equilibrium systems do not have analytical solutions for the spacing distribution and correlation functions. Because of that, we explore the possibility to use the Wigner surmise approximation in these systems. We found that this approximation provides a first approach to the statistical behavior of complex systems, in particular we use it to find an analytical approximation to the nearest neighbor distribution of the annihilation random walk

    Diffusion-Limited Coalescence with Finite Reaction Rates in One Dimension

    Full text link
    We study the diffusion-limited process A+A→AA+A\to A in one dimension, with finite reaction rates. We develop an approximation scheme based on the method of Inter-Particle Distribution Functions (IPDF), which was formerly used for the exact solution of the same process with infinite reaction rate. The approximation becomes exact in the very early time regime (or the reaction-controlled limit) and in the long time (diffusion-controlled) asymptotic limit. For the intermediate time regime, we obtain a simple interpolative behavior between these two limits. We also study the coalescence process (with finite reaction rates) with the back reaction A→A+AA\to A+A, and in the presence of particle input. In each of these cases the system reaches a non-trivial steady state with a finite concentration of particles. Theoretical predictions for the concentration time dependence and for the IPDF are compared to computer simulations. P. A. C. S. Numbers: 82.20.Mj 02.50.+s 05.40.+j 05.70.LnComment: 13 pages (and 4 figures), plain TeX, SISSA-94-0

    A Method of Intervals for the Study of Diffusion-Limited Annihilation, A + A --> 0

    Full text link
    We introduce a method of intervals for the analysis of diffusion-limited annihilation, A+A -> 0, on the line. The method leads to manageable diffusion equations whose interpretation is intuitively clear. As an example, we treat the following cases: (a) annihilation in the infinite line and in infinite (discrete) chains; (b) annihilation with input of single particles, adjacent particle pairs, and particle pairs separated by a given distance; (c) annihilation, A+A -> 0, along with the birth reaction A -> 3A, on finite rings, with and without diffusion.Comment: RevTeX, 13 pages, 4 figures, 1 table. References Added, and some other minor changes, to conform with final for

    Exact solution of the Nonconsensus Opinion Model on the line

    Full text link
    The nonconcensus opinion model (NCO) introduced recently by Shao et al., [Phys. Rev. Lett.103, 018701 (2009)] is solved exactly on the line. Although, as expected, the model exhibits no phase transition in one dimension, its study is interesting because of the connection with invasion percolation with trapping. The system evolves exponentially fast to the steady-state, rapidly developing long-range correlations: The average cluster size in the steady state scales as the square of the initial cluster size, of the (uncorrelated) initial state. We also discuss briefly the NCO model on Bethe lattices, arguing that its phase transition diagram is different than that of regular percolation.Comment: New version corrects some spurious mistakes, conforms with version to be published (PRE - Rapid Communication
    • …
    corecore