2 research outputs found
Quantile-Optimal Treatment Regimes
<p>Finding the optimal treatment regime (or a series of sequential treatment regimes) based on individual characteristics has important applications in areas such as precision medicine, government policies, and active labor market interventions. In the current literature, the optimal treatment regime is usually defined as the one that maximizes the average benefit in the potential population. This article studies a general framework for estimating the quantile-optimal treatment regime, which is of importance in many real-world applications. Given a collection of treatment regimes, we consider robust estimation of the quantile-optimal treatment regime, which does not require the analyst to specify an outcome regression model. We propose an alternative formulation of the estimator as a solution of an optimization problem with an estimated nuisance parameter. This novel representation allows us to investigate the asymptotic theory of the estimated optimal treatment regime using empirical process techniques. We derive theory involving a nonstandard convergence rate and a nonnormal limiting distribution. The same nonstandard convergence rate would also occur if the mean optimality criterion is applied, but this has not been studied. Thus, our results fill an important theoretical gap for a general class of policy search methods in the literature. The article investigates both static and dynamic treatment regimes. In addition, doubly robust estimation and alternative optimality criterion such as that based on Gini’s mean difference or weighted quantiles are investigated. Numerical simulations demonstrate the performance of the proposed estimator. A data example from a trial in HIV+ patients is used to illustrate the application. Supplementary materials for this article are available online.</p
Genome-wide DNA methylation associations with spontaneous preterm birth in US blacks: findings in maternal and cord blood samples
<p>Preterm birth (PTB) affects one in six Black babies in the United States. Epigenetics is believed to play a role in PTB; however, only a limited number of epigenetic studies of PTB have been reported, most of which have focused on cord blood DNA methylation (DNAm) and/or were conducted in white populations. Here we conducted, by far, the largest epigenome-wide DNAm analysis in 300 Black women who delivered early spontaneous preterm (sPTB, n = 150) or full-term babies (n = 150) and replicated the findings in an independent set of Black mother-newborn pairs from the Boston Birth Cohort. DNAm in maternal blood and/or cord blood was measured using the Illumina HumanMethylation450 BeadChip. We identified 45 DNAm loci in maternal blood associated with early sPTB, with a false discovery rate (FDR) <5%. Replication analyses confirmed sPTB associations for cg03915055 and cg06804705, located in the promoter regions of the <i>CYTIP</i> and <i>LINC00114</i> genes, respectively. Both loci had comparable associations with early sPTB and early medically-indicated PTB, but attenuated associations with late sPTB. These associations could not be explained by cell composition, gestational complications, and/or nearby maternal genetic variants. Analyses in the newborns of the 110 Black women showed that cord blood methylation levels at both loci had no associations with PTB. The findings from this study underscore the role of maternal DNAm in PTB risk, and provide a set of maternal loci that may serve as biomarkers for PTB. Longitudinal studies are needed to clarify temporal relationships between maternal DNAm and PTB risk.</p