528 research outputs found

    The institutional and cultural framing of the educational stratification in fertility. A review of the role of labor market institutions and attitudinal orientations

    Get PDF
    none1noThe aim of this article is to overcome the incomplete explanation of previous research findings on the societal determinants of the educational fertility differentials in Europe. Our analysis draws on two overlooked factors, the role of labour market setting and the diffusion of new values. Combining ESS, EVS and WVS data for 2004–2009 with contextual indicators on labour market setting and cultural orientations, our multilevel analysis shows that labour market conditions in terms of share of part time jobs, dimension of public sector employment and strictness of EPL do not systematically modify the gradient of fertility by parities. But instead, we observe a clear moderator effect of attitudinal orientations. Results show that in societies where postmodernism is widespread, both high and low educated women are less likely to have children. A high diffusion of gender egalitarianism is associated with a reduction of the gradient through an increase of the likelihood of having a child especially for higher educated women. This article concludes by highlighting some responses to societal polarization of fertility related to both structural and cultural factors and indicates avenues for future research on the social stratification of fertility.mixedBellani D.Bellani D

    Slip-velocity of large neutrally-buoyant particles in turbulent flows

    Full text link
    We discuss possible definitions for a stochastic slip velocity that describes the relative motion between large particles and a turbulent flow. This definition is necessary because the slip velocity used in the standard drag model fails when particle size falls within the inertial subrange of ambient turbulence. We propose two definitions, selected in part due to their simplicity: they do not require filtration of the fluid phase velocity field, nor do they require the construction of conditional averages on particle locations. A key benefit of this simplicity is that the stochastic slip velocity proposed here can be calculated equally well for laboratory, field, and numerical experiments. The stochastic slip velocity allows the definition of a Reynolds number that should indicate whether large particles in turbulent flow behave (a) as passive tracers; (b) as a linear filter of the velocity field; or (c) as a nonlinear filter to the velocity field. We calculate the value of stochastic slip for ellipsoidal and spherical particles (the size of the Taylor microscale) measured in laboratory homogeneous isotropic turbulence. The resulting Reynolds number is significantly higher than 1 for both particle shapes, and velocity statistics show that particle motion is a complex non-linear function of the fluid velocity. We further investigate the nonlinear relationship by comparing the probability distribution of fluctuating velocities for particle and fluid phases

    When equity matters for marital stability: Comparing German and U.S. couples

    Get PDF
    none3siComparing West Germany and the U.S., we analyze the association between equity—in terms of the relative gender division of paid and unpaid work hours—and the risk of marriage dissolution. Our aim is to identify under what conditions equity influences couple stability. We apply event-history analysis to marriage histories using data from the German Socio-Economic Panel for West Germany and the Panel Study of Income Dynamics for the U.S. for the period 1986–2009/10. For the U.S., we find that deviation from equity is particularly destabilizing when the wife underbenefits, especially when both partners’ paid work hours are similar. In West Germany, equity is less salient. Instead, we find that the male breadwinner model remains the single most stable couple arrangement.mixedBellani D.; Esping Andersen G.; Pessin L.Bellani D.; Esping Andersen G.; Pessin L

    Plateau insulator transition in graphene

    Full text link
    The quantum Hall effect in a single-layer graphene sample is studied in strong magnetic fields up to 28 T. Our measurements reveal the existence of a metal- insulator transition from filling factor Îœ=−2\nu=-2 to Îœ=0\nu=0. The value of the universal scaling exponent is found to be Îș=0.57\kappa=0.57 in graphene and therefore in a truly two-dimensional system. This value of Îș\kappa is in agreement with the accepted universal value for the plateau-insulator transitions in standard quasi two-dimensional electron and hole gases.Comment: 10 pages, 5 figure

    Directed growth and fusion of membrane-wall microdomains requires CASP-mediated inhibition and displacement of secretory foci.

    Get PDF
    Casparian strips (CS) are aligned bands of lignin-impregnated cell walls, building an extracellular diffusion barrier in roots. Their structure profoundly differs from tight junctions (TJ), analogous structures in animals. Nonetheless, CS membrane domain (CSD) proteins 1-5 (CASP1-5) are homologues of occludins, TJ components. CASP-marked membranes display cell wall (matrix) adhesion and membrane protein exclusion. A full CASP knock-out now reveals CASPs are not needed for localized lignification, since correctly positioned lignin microdomains still form in the mutant. Ultra-structurally, however, these microdomains are disorganized, showing excessive cell wall growth, lack of exclusion zone and matrix adhesion, and impaired exocyst dynamics. Proximity-labelling identifies a Rab-GTPase subfamily, known exocyst activators, as potential CASP-interactors and demonstrate their localization and function at the CSD. We propose that CASP microdomains displace initial secretory foci by excluding vesicle tethering factors, thereby ensuring rapid fusion of microdomains into a membrane-cell wall band that seals the extracellular space

    Actual performance of mechanical ventilators in ICU: a multicentric quality control study.

    Get PDF
    Even if the performance of a given ventilator has been evaluated in the laboratory under very well controlled conditions, inappropriate maintenance and lack of long-term stability and accuracy of the ventilator sensors may lead to ventilation errors in actual clinical practice. The aim of this study was to evaluate the actual performances of ventilators during clinical routines. A resistance (7.69 cmH(2)O/L/s) - elastance (100 mL/cmH(2)O) test lung equipped with pressure, flow, and oxygen concentration sensors was connected to the Y-piece of all the mechanical ventilators available for patients in four intensive care units (ICUs; n = 66). Ventilators were set to volume-controlled ventilation with tidal volume = 600 mL, respiratory rate = 20 breaths/minute, positive end-expiratory pressure (PEEP) = 8 cmH(2)O, and oxygen fraction = 0.5. The signals from the sensors were recorded to compute the ventilation parameters. The average ± standard deviation and range (min-max) of the ventilatory parameters were the following: inspired tidal volume = 607 ± 36 (530-723) mL, expired tidal volume = 608 ± 36 (530-728) mL, peak pressure = 20.8 ± 2.3 (17.2-25.9) cmH(2)O, respiratory rate = 20.09 ± 0.35 (19.5-21.6) breaths/minute, PEEP = 8.43 ± 0.57 (7.26-10.8) cmH(2)O, oxygen fraction = 0.49 ± 0.014 (0.41-0.53). The more error-prone parameters were the ones related to the measure of flow. In several cases, the actual delivered mechanical ventilation was considerably different from the set one, suggesting the need for improving quality control procedures for these machines

    Position paper of the Italian Association of Medical Oncology on the impact of COVID-19 on Italian oncology and the path forward: the 2021 Matera statement

    Get PDF
    The coronavirus disease 2019 (COVID-19) pandemic has severely affected cancer care and research by disrupting the prevention and treatment paths as well as the preclinical, clinical, and translational research ecosystem. In Italy, this has been particularly significant given the severity of the pandemic's impact and the intrinsic vulnerabilities of the national health system. However, whilst detrimental, disruption can also be constructive and may stimulate innovation and progress. The Italian Association of Medical Oncology (AIOM) has recognized the impact of COVID-19 on cancer care continuum and research and proposes the '2021 Matera statement' which aims at providing pragmatic guidance for policymakers and health care institutions to mitigate the impact of the global health crisis on Italian oncology and design the recovery plan for the post-pandemic scenario. The interventions are addressed both to the pillars (prevention, diagnosis, treatment, follow-up, health care professionals) and foundations of cancer care (communication and care relationship, system organization, resources, research, networking). The priorities to be implemented can be summarized in the MATERA acronym: Multidisciplinarity; Access to cancer care; Telemedicine and Territoriality; Equity, ethics, education; Research and resources; Alliance between stakeholders and patients

    Statistics of low-energy levels of a one-dimensional weakly localized Frenkel exciton: A numerical study

    Get PDF
    Numerical study of the one-dimensional Frenkel Hamiltonian with on-site randomness is carried out. We focus on the statistics of the energy levels near the lower exciton band edge, i. e. those determining optical response. We found that the distribution of the energy spacing between the states that are well localized at the same segment is characterized by non-zero mean, i.e. these states undergo repulsion. This repulsion results in a local discrete energy structure of a localized Frenkel exciton. On the contrary, the energy spacing distribution for weakly overlapping local ground states (the states with no nodes within their localization segments) that are localized at different segments has zero mean and shows almost no repulsion. The typical width of the latter distribution is of the same order as the typical spacing in the local discrete energy structure, so that this local structure is hidden; it does not reveal itself neither in the density of states nor in the linear absorption spectra. However, this structure affects the two-exciton transitions involving the states of the same segment and can be observed by the pump-probe spectroscopy. We analyze also the disorder degree scaling of the first and second momenta of the distributions.Comment: 10 pages, 6 figure

    Increased salience of gains versus decreased associative learning differentiate bipolar disorder from schizophrenia during incentive decision making

    Get PDF
    Background Abnormalities in incentive decision making, typically assessed using the Iowa Gambling Task (IGT), have been reported in both schizophrenia (SZ) and bipolar disorder (BD). We applied the Expectancy-Valence (E-V) model to determine whether motivational, cognitive and response selection component processes of IGT performance are differentially affected in SZ and BD. Method Performance on the IGT was assessed in 280 individuals comprising 70 remitted patients with SZ, 70 remitted patients with BD and 140 age-, sex-and IQ-matched healthy individuals. Based on the E-V model, we extracted three parameters, 'attention to gains or loses', 'expectancy learning' and 'response consistency', that respectively reflect motivational, cognitive and response selection influences on IGT performance. Results Both patient groups underperformed in the IGT compared to healthy individuals. However, the source of these deficits was diagnosis specific. Associative learning underlying the representation of expectancies was disrupted in SZ whereas BD was associated with increased incentive salience of gains. These findings were not attributable to non-specific effects of sex, IQ, psychopathology or medication. Conclusions Our results point to dissociable processes underlying abnormal incentive decision making in BD and SZ that could potentially be mapped to different neural circuits