307 research outputs found
Comparison of two methods for describing the strain profiles in quantum dots
The electronic structure of interfaces between lattice-mismatched
semiconductor is sensitive to the strain. We compare two approaches for
calculating such inhomogeneous strain -- continuum elasticity (CE, treated as a
finite difference problem) and atomistic elasticity (AE). While for small
strain the two methods must agree, for the large strains that exist between
lattice-mismatched III-V semiconductors (e.g. 7% for InAs/GaAs outside the
linearity regime of CE) there are discrepancies. We compare the strain profile
obtained by both approaches (including the approximation of the correct C_2
symmetry by the C_4 symmetry in the CE method), when applied to C_2-symmetric
InAs pyramidal dots capped by GaAs.Comment: To appear in J. Appl. Physic
First-principles study of (BiScO3){1-x}-(PbTiO3){x} piezoelectric alloys
We report a first-principles study of a class of (BiScO3)_{1-x}-(PbTiO3)_x
(BS-PT) alloys recently proposed by Eitel et al. as promising materials for
piezoelectric actuator applications. We show that (i) BS-PT displays very large
structural distortions and polarizations at the morphotropic phase boundary
(MPB) (we obtain a c/a of ~1.05-1.08 and P_tet of ~1.1 C/m^2); (ii) the
ferroelectric and piezoelectric properties of BS-PT are dominated by the onset
of hybridization between Bi/Pb-6p and O-2p orbitals, a mechanism that is
enhanced upon substitution of Pb by Bi; and (iii) the piezoelectric responses
of BS-PT and Pb(Zr_{1-x}Ti_x)O3 (PZT) at the MPB are comparable, at least as
far as the computed values of the piezoelectric coefficient d_15 are concerned.
While our results are generally consistent with experiment, they also suggest
that certain intrinsic properties of BS-PT may be even better than has been
indicated by experiments to date. We also discuss results for PZT that
demonstrate the prominent role played by Pb displacements in its piezoelectric
properties.Comment: 6 pages, with 3 postscript figures embedded. Uses REVTEX and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/ji_bi/index.htm
Soft Phonon Anomalies in the Relaxor Ferroelectric Pb(Zn_1/3Nb_2/3)_0.92Ti_0.08O_3
Neutron inelastic scattering measurements of the polar TO phonon mode
dispersion in the cubic relaxor Pb(Zn_1/3Nb_2/3)_0.92Ti_0.08O_3 at 500K reveal
anomalous behavior in which the optic branch appears to drop precipitously into
the acoustic branch at a finite value of the momentum transfer q=0.2 inverse
Angstroms, measured from the zone center. We speculate this behavior is the
result of nanometer-sized polar regions in the crystal.Comment: 4 pages, 4 figure
Anomalous transverse acoustic phonon broadening in the relaxor ferroelectric Pb(Mg_1/3Nb_2/3)O_3
The intrinsic linewidth of the transverse acoustic (TA) phonon
observed in the relaxor ferroelectric compound
Pb(MgNbTiO (PMN-20%PT) begins to broaden
with decreasing temperature around 650 K, nearly 300 K above the ferroelectric
transition temperature ( K). We speculate that this anomalous
behavior is directly related to the condensation of polarized, nanometer-sized,
regions at the Burns temperature . We also observe the ``waterfall''
anomaly previously seen in pure PMN, in which the transverse optic (TO) branch
appears to drop precipitously into the TA branch at a finite momentum transfer
\AA. The waterfall feature is seen even at
temperatures above . This latter result suggests that the PNR exist as
dynamic entities above .Comment: 6 pages, 4 figure
Lattice instabilities of PbZrO3/PbTiO3 [1:1] superlattices from first principles
Ab initio phonon calculations for the nonpolar reference structures of the
(001), (110), and (111) PbZrO_3/PbTiO_3 [1:1] superlattices are presented. The
unstable polar modes in the tetragonal (001) and (110) structures are confined
in either the Ti- or the Zr-centered layers and display two-mode behavior,
while in the cubic (111) case one-mode behavior is observed. Instabilities with
pure oxygen character are observed in all three structures. The implications
for the ferroelectric behavior and related properties are discussed.Comment: 12 pages, 2 figures, 7 tables, submitted to PR
Charge transfer electrostatic model of compositional order in perovskite alloys
We introduce an electrostatic model including charge transfer, which is shown
to account for the observed B-site ordering in Pb-based perovskite alloys. The
model allows charge transfer between A-sites and is a generalization of
Bellaiche and Vanderbilt's purely electrostatic model. The large covalency of
Pb^{2+} compared to Ba^{2+} is modeled by an environment dependent effective
A-site charge. Monte Carlo simulations of this model successfully reproduce the
long range compositional order of both Pb-based and Ba-based complex
A(BB^{'}B^{''})O_3 perovskite alloys. The models are also extended to study
systems with A-site and B-site doping, such as
(Na_{1/2}La_{1/2})(Mg_{1/3}Nb_{2/3})O_3,
(Ba_{1-x}La_{x})(Mg_{(1+x)/3}Nb_{(2-x)/3})O_3 and
(Pb_{1-x}La_{x})(Mg_{(1+x)/3}Ta_{(2-x)/3})O_3. General trends are reproduced by
purely electrostatic interactions, and charge transfer effects indicate that
local structural relaxations can tip the balance between different B-site
orderings in Pb based materials.Comment: 15 pages, 6 figure
Virtual-crystal approximation that works: Locating a composition phase boundary in Pb(Zr_{1-x}Ti_3)O_3
We present a new method for modeling disordered solid solutions, based on the
virtual crystal approximation (VCA). The VCA is a tractable way of studying
configurationally disordered systems; traditionally, the potentials which
represent atoms of two or more elements are averaged into a composite atomic
potential. We have overcome significant shortcomings of the standard VCA by
developing a potential which yields averaged atomic properties. We perform the
VCA on a ferroelectric oxide, determining the energy differences between the
high-temperature rhombohedral, low-temperature rhombohedral and tetragonal
phases of Pb(Zr_{1-x}Ti_x)O_3 at x=0.5 and comparing these results to
superlattice calculations and experiment. We then use our new method to
determine the preferred structural phase at x=0.4. We find that the
low-temperature rhombohedral phase becomes the ground state at x=0.4, in
agreement with experimental findings.Comment: 5 pages, no figure
Symmetry of high-piezoelectric Pb-based complex perovskites at the morphotropic phase boundary I. Neutron diffraction study on Pb(Zn1/3Nb2/3)O3 -9%PbTiO3
The symmetry was examined using neutron diffraction method on
Pb(Zn1/3Nb2/3)O3 -9%PbTiO3 (PZN/9PT) which has a composition at the
morphotropic phase boundary (MPB) between Pb(Zn1/3Nb2/3)O3 and PbTiO3. The
results were compared with those of other specimens with same composition but
with different prehistory. The equilibrium state of all examined specimens is
not the mixture of rhombohedral and tetragonal phases of the end members but
exists in a new polarization rotation line Mc# (orthorhombic-monoclinic line).
Among examined specimens, one exhibited tetragonal symmetry at room temperature
but recovered monoclinic phase after a cooling and heating cycle
BAs and boride III-V alloys
Boron arsenide, the typically-ignored member of the III-V arsenide series
BAs-AlAs-GaAs-InAs is found to resemble silicon electronically: its Gamma
conduction band minimum is p-like (Gamma_15), not s-like (Gamma_1c), it has an
X_1c-like indirect band gap, and its bond charge is distributed almost equally
on the two atoms in the unit cell, exhibiting nearly perfect covalency. The
reasons for these are tracked down to the anomalously low atomic p orbital
energy in the boron and to the unusually strong s-s repulsion in BAs relative
to most other III-V compounds. We find unexpected valence band offsets of BAs
with respect to GaAs and AlAs. The valence band maximum (VBM) of BAs is
significantly higher than that of AlAs, despite the much smaller bond length of
BAs, and the VBM of GaAs is only slightly higher than in BAs. These effects
result from the unusually strong mixing of the cation and anion states at the
VBM. For the BAs-GaAs alloys, we find (i) a relatively small (~3.5 eV) and
composition-independent band gap bowing. This means that while addition of
small amounts of nitrogen to GaAs lowers the gap, addition of small amounts of
boron to GaAs raises the gap (ii) boron ``semi-localized'' states in the
conduction band (similar to those in GaN-GaAs alloys), and (iii) bulk mixing
enthalpies which are smaller than in GaN-GaAs alloys. The unique features of
boride III-V alloys offer new opportunities in band gap engineering.Comment: 18 pages, 14 figures, 6 tables, 61 references. Accepted for
publication in Phys. Rev. B. Scheduled to appear Oct. 15 200
- …