354 research outputs found

    Standard FITS template for simulated astrophysical scenes with the WFIRST coronagraph

    Get PDF
    The science investigation teams (SITs) for the WFIRST coronagraphic instrument have begun studying the capabilities of the instrument to directly image reflected light off from exoplanets at contrasts down to contrasts of ~10^-9 with respect to the stellar flux. Detection of point sources at these high contrasts requires yield estimates and detailed modeling of the image of the planetary system as it propagates through the telescope optics. While the SITs might generate custom astrophysical scenes, the integrated model, propagated through the internal speckle field, is typically done at JPL. In this white paper, we present a standard file format to ensure a single distribution system between those who produce the raw astrophysical scenes, and JPL modelers who incorporate those scenes into their optical modeling. At its core, our custom file format uses FITS files, and incorporates standards on packaging astrophysical scenes. This includes spectral and astrometric information for planetary and stellar point sources, zodiacal light and extragalactic sources that may appear as contaminants. Adhering to such a uniform data distribution format is necessary, as it ensures seamless work flow between the SITs and modelers at JPL for the goals of understanding limits of the WFIRST coronagraphic instrument.Comment: 8 pages, white pape

    Mapping out the time-evolution of exoplanet processes

    Get PDF
    There are many competing theories and models describing the formation, migration and evolution of exoplanet systems. As both the precision with which we can characterize exoplanets and their host stars, and the number of systems for which we can make such a characterization increase, we begin to see pathways forward for validating these theories. In this white paper we identify predicted, observable correlations that are accessible in the near future, particularly trends in exoplanet populations, radii, orbits and atmospheres with host star age. By compiling a statistically significant sample of well-characterized exoplanets with precisely measured ages, we should be able to begin identifying the dominant processes governing the time-evolution of exoplanet systems.Comment: Astro2020 white pape

    Planet Sensitivity from Combined Ground- and Space-based Microlensing Observations

    Get PDF
    To move one step forward toward a Galactic distribution of planets, we present the first planet sensitivity analysis for microlensing events with simultaneous observations from space and the ground. We present this analysis for two such events, OGLE-2014-BLG-0939 and OGLE-2014-BLG-0124, which both show substantial planet sensitivity even though neither of them reached high magnification. This suggests that an ensemble of low to moderate magnification events can also yield significant planet sensitivity, and therefore probability, for detecting planets. The implications of our results to the ongoing and future space-based microlensing experiments to measure the Galactic distribution of planets are discussed

    A White Paper Submitted to The National Academy of Science's Committee on Exoplanet Science Strategy: Observing Exoplanets with the James Webb Space Telescope

    Get PDF
    The James Webb Space Telescope (JWST) will revolutionize our understanding of exoplanets with transit spectroscopy of a wide range of mature planets close to their host stars (10 AU). The census of exoplanets has revealed an enormous variety of planets orbiting stars of all ages and spectral types. With TESS adding to this census with its all-sky survey of the closest, brightest stars, the challenge of the coming decade will be to move from demography to physical characterization. This white paper discusses the wide variety of exoplanet opportunities enabled by JWST's sensitivity and stability, its high angular resolution, and its suite of powerful instruments. JWST observations will advance our understanding of the atmospheres of young to mature planets and will provide new insights into planet formation

    Know the Star, Know the Planet. V. Characterization of the Stellar Companion to the Exoplanet Host HD 177830

    Get PDF
    HD 177830 is an evolved K0IV star with two known exoplanets. In addition to the planetary companions it has a late-type stellar companion discovered with adaptive optics imagery. We observed the binary star system with the PHARO near-IR camera and the Project 1640 coronagraph. Using the Project 1640 coronagraph and integral field spectrograph we extracted a spectrum of the stellar companion. This allowed us to determine that the spectral type of the stellar companion is a M4±1V. We used both instruments to measure the astrometry of the binary system. Combining these data with published data, we determined that the binary star has a likely period of approximately 800 years with a semi-major axis of 100-200 AU. This implies that the stellar companion has had little or no impact on the dynamics of the exoplanets. The astrometry of the system should continue to be monitored, but due to the slow nature of the system, observations can be made once every 5-10 years

    Integration and evaluation of a near-infrared camera utilizing a HgCdTe NICMOS3 array for the Mt. Palomar 200-inch Observatory

    Get PDF
    In this paper we describe the main subsystems that constitute the Mt. Palomar Prime Focus InfraRed Camera (PFIRCAM), together with some of the characterization data obtained for the focal plane array. This camera is currently a facility instrument at the 200-inch Mt. Palomar Observatory. It helps to satisfy the observational needs of astronomers in the spectral range of 1 micrometers to 2.5 micrometers by utilizing a HgCdTe NICMOS3 array. The camera has a plate scale of 0.54 arcsec/pixel for an overall FOV of 138 X 138 arcsec

    Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program

    Get PDF
    The James Webb Space Telescope (JWST) will likely revolutionize transiting exoplanet atmospheric science, due to a combination of its capability for continuous, long duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) Cycle 1 program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful transiting exoplanet characterization programs in later cycles. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions, confirm throughputs, and determine overall performances. In our search for transiting exoplanets that are well suited to achieving these goals, we identify 12 objects (dubbed "community targets") that meet our defined criteria. Currently, the most favorable target is WASP-62b because of its large predicted signal size, relatively bright host star, and location in JWST's continuous viewing zone. Since most of the community targets do not have well-characterized atmospheres, we recommend initiating preparatory observing programs to determine the presence of obscuring clouds/hazes within their atmospheres. Measurable spectroscopic features are needed to establish the optimal resolution and wavelength regions for exoplanet characterization. Other initiatives from our proposed ERS program include testing the instrument brightness limits and performing phase-curve observations. The latter are a unique challenge compared to transit observations because of their significantly longer durations. Using only a single mode, we propose to observe a full-orbit phase curve of one of the previously characterized, short-orbital-period planets to evaluate the facility-level aspects of long, uninterrupted time-series observations
    corecore