4 research outputs found

    Metabolic Engineering of Escherichia coli for para-Amino-Phenylethanol and para-Amino-Phenylacetic Acid Biosynthesis

    Get PDF
    Aromatic amines are an important class of chemicals which are used as building blocks for the synthesis of polymers and pharmaceuticals. In this study we establish a de novo pathway for the biosynthesis of the aromatic amines para-amino-phenylethanol (PAPE) and para-amino-phenylacetic acid (4-APA) in Escherichia coli. We combined a synthetic para-amino-l-phenylalanine pathway with the fungal Ehrlich pathway. Therefore, we overexpressed the heterologous genes encoding 4-amino-4-deoxychorismate synthase (pabAB from Corynebacterium glutamicum), 4-amino-4-deoxychorismate mutase and 4-amino-4-deoxyprephenate dehydrogenase (papB and papC from Streptomyces venezuelae) and ThDP-dependent keto-acid decarboxylase (aro10 from Saccharomyces cerevisiae) in E. coli. The resulting para-amino-phenylacetaldehyde either was reduced to PAPE or oxidized to 4-APA. The wild type strain E. coli LJ110 with a plasmid carrying these four genes produced (in shake flask cultures) 11 ± 1.5 mg l−1 of PAPE from glucose (4.5 g l−1). By the additional cloning and expression of feaB (phenylacetaldehyde dehydrogenase from E. coli) 36 ± 5 mg l−1 of 4-APA were obtained from 4.5 g l−1 glucose. Competing reactions, such as the genes for aminotransferases (aspC and tyrB) or for biosynthesis of L-phenylalanine and L-tyrosine (pheA, tyrA) and for the regulator TyrR were removed. Additionally, the E. coli genes aroFBL were cloned and expressed from a second plasmid. The best producer strains of E. coli showed improved formation of PAPE and 4-APA, respectively. Plasmid-borne expression of an aldehyde reductase (yahK from E. coli) gave best values for PAPE production, whereas feaB-overexpression led to best values for 4-APA. In fed-batch cultivation, the best producer strains achieved 2.5 ± 0.15 g l−1 of PAPE from glucose (11% C mol mol-1 glucose) and 3.4 ± 0.3 g l−1 of 4-APA (17% C mol mol−1 glucose), respectively which are the highest values for recombinant strains reported so far

    Biotechnologische Produktion von aromatischen Aminen und aromatischen Alkoholen durch rekombinante Escherichia coli-StÀmme

    No full text
    Aromatic amine (AA) are an important group of industrial chemicals which are widely used for technical and pharmaceutical applications and described as the building block of drugs (Bedair et al. 2006; Jobdevairakkam and Velladurai 2009; Sacco and Bientinesi 2016), antibiotics, plastics and aromatic polymers (Arora 2015; Masuo et al. 2016; Tsuge et al. 2016; Kawasaki et al. 2018). In addition, aromatic alcohols, as other valuable compounds, are widely used in manufacturers of perfumes, cosmetics, and foods, and pharmaceutical industry (Etschmann et al. 2002; MirĂł-Casas et al. 2003; Bai et al. 2014). Most of the AAs and aromatic alcohols are chemically synthesized from petroleum sources and considered as “unnatural”, which are inappropriate to make cosmetic, drugs or food ingredient, thereby natural microbial biosynthesis of these valuable compounds in E.coli would be an alternative approach. In the first part of this study, a de-novo biosynthesis pathway was established for high titer production of three aromatic amines, para-amino-L-phenylalanine (L-PAPA), para-amino-phenylethanol (PAPE) and para-amino-phenylacetic acid (4-APA) from glucose/glycerol via genetic modification of the shikimate pathway in recombinant E. coli (Mohammadi et al. 2018 and 2019). To generate a platform strain for L-PAPA production from shikimate pathway, the genes pabAB from Corynebacterium glutamicum (Kozak 2006), papB and papC from Streptomyces venezuelae (Blanc et al. 1997; He et al. 2001; Mehl et al. 2003) were heterologously overexpressed from plasmid in E. coli FUS4.7R (Gottlieb et al. 2014). Then, the metabolic flux was directed to PAPE and 4-APA production via overexpression of aro10 from Saccharomyces cerevisiae (Kneen et al. 2011; Vuralhan et al. 2003 and 2005) and both aro10 and feaB in E. coli FUS4BCR, respectively. The engineered E. coli strains were cultured in the shake-flasks with fed batch condition and investigated for L-PAPA, PAPE and 4-APA production by HPLC and LC-MS. In the simple shake flask experiments, the plasmid based strain produced L-PAPA as high as 0.534 ± 0.024 g l-1 from 5 ± 0.24 g l-1 glycerol. Also, introduction of aro10 and yahK in L-PAPA producing strain resulted in 0.526 ± 0.025 g l-1 PAPE. Furthermore, by introducing feaB into the PAPE- producing strain, 4-APA was obtained with a titer of 0.458 ± 0.014 g l-1. Last but not least, by further strain improvement and optimizing growth condition via glucose/glycerol feed strategy, an increasing titer of L-PAPA, PAPE and 4-APA approximately 5.5 ± 0.4 g l-1, 2.5 ± 0.15 g l-1 and 3.4 ± 0.3 g l-1 were obtained, respectively. In subsequent fed-batch cultivation with a final volume of 12.2 l and the carbon sources glycerol, a final L-PAPA-titer of 16.8 g l-1 was obtained. This equals a yield of 0.13 L-PAPA / glycerol (g g-1) and a space-time-yield of 0.22 g l-1 h-1 L-PAPA formation over the whole process. Furthermore, a de-novo biosynthesis pathway for the production of 2-Phenylethanol (2-PE)/tyrosol from glucose with genetically engineered E. coli strains without additional L-phenylalanine/ L-tyrosine as supplement was demonstrated. Starting from chorismate, which is the direct precursor of phenylpyruvate (PP)/ 4-Hydroxyphenylpyruvate (4-HPP), an artificial Ehrlich biosynthesis pathway was created (Etschmann et al. 2002) toward 2-PE or tyrosol. To generate a platform strain for production of 2-PE and tyrosol from shikimate pathway, the genes pheA or tyrA encoding proteins chorismate mutase/prephenate dehydratase or prephenate dehydrogenase (feedback resistance variant, RĂŒffer et al. 2004; Gottlieb et al. 2014), respectively, were cloned and subsequently overexpressed from plasmid in E. coli. In the next step, the metabolic flux was directed to 2-PE and tyrosol production via overexpression of aro10 encoding phenylpyruvate decarboxylase from S. cerevisiae. Furthermore, in order to enhance the flux toward downstream 2-PE/tyrosol pathway, the relevant genes of three rate limiting steps including aroF, aroB and aroL were subcloned and overexpressed from plasmid. Upon simple batch cultivation, these strains separately yielded 369 ± 25 mg l-1 2-PE and 437 ± 33 mg l-1 tyrosol from 4.5 ± 0.21 g l-1 glucose. Final titer in the shake flask was further improved through glucose fed-batch fermentation to 1.75 ± 0.12 g l-1 2-PE and 1.68 ± 0.19 g l-1 tyrosol. The subsequent significant enhancement of 2-PE/tyrosol production occurred through employing in situ product removal (ISPR) techniques including two-phase extraction by different organic compounds (Etschmann et al. 2002; RĂŒffer et al. 2004; SchĂŒgerl and Hubbuch 2005; Hu and Xu 2011; Chreptowicz et al. 2018). In subsequent glucose-limited fed-batch cultivation with a benchtop bioreactor system (0.75 l), a final 2-PE and tyrosol-titer of 3.1 g l-1 and 3.6 g l-1 reached with a yield and a space-time-yield of 0.07 g g-1 and 0.03 g l-1 h-1 for 2-PE and 0.08 g g-1 and 0.04 g l-1 h-1 for tyrosol, respectively. These works have successfully demonstrated the possibility of synthesizing of several invaluable fine chemicals in whole-cell system using plasmid based-E.coli strains. In addition, the titter and yield previously reported in the biosynthesis of aromatic amines (L-PAPA, PAPE or 4-APA) or even aromatic alcohols (2-PE or tyrosol) have been significantly improved in this study.Aromatische Amine (AA) sind eine wichtige Gruppe von Industriechemikalien, die fĂŒr viele technische und pharmazeutische Anwendungen genutzt werden. Diese können als Bausteine fĂŒr die Herstellung von Medikamenten (Bedair et al. 2006; Jobdevairakkam und Velladurai 2009; Sacco und Bientinesi 2016), Antibiotika, Kunststoffen und aromatischen Polymeren genutzt werden (Arora 2015; Masuo et al., 2016; Tsuge et al . 2016; Kawasaki et al. 2018). DarĂŒber hinaus werden aromatische Alkohole; in Parfums, Kosmetika, Nahrungsmitteln und Pharmazeutika verwendet (Etschmann et al. 2002; MirĂł-Casas et al. 2003; Bai et al. 2014). Die meisten AA und aromatischen Alkohole werden chemisch aus erdölbasierten Rohstoffen synthetisiert. Diese AA sind ungĂŒnstig fĂŒr die Herstellung von Kosmetika, Arzneimitteln oder Nahrungsmittelbestandteilen. Daher ist eine natĂŒrliche mikrobielle Biosynthese dieser wertvollen Verbindungen mit E. coli ein attraktiver Ansatz. Im ersten Teil dieser Arbeit wurde ein De-novo-Biosyntheseweg fĂŒr die Produktion von drei aromatischen Aminen, para-Aminophenylalanin (L-PAPA), para-Aminophenylethanol (PAPE) und 4-AminophenylessigsĂ€ure (4-APA) aus Glukose/Glyzerin durch genetische Modifikation in rekombinanten E. coli etabliert (Mohammadi et al. 2018 and 2019). Zur Erzeugung eines Plattformstamms fĂŒr die L-PAPA-Produktion wurden die Gene pabAB aus Corynebacterium glutamicum (Kozak 2006; Stolz et al. 2007), papB und papC aus Streptomyces venezuelae (Blanc et al. 1997; He et al. 2001; Mehl et al. 2003) in E. coli FUS4.7R heterolog mittels Plasmiden ĂŒberexprimiert (Gottlieb et al. 2014). In E. coli FUS4BCR wurde anschließend der metabolische Fluss durch Überexpression der Phenylpyruvat-Decarboxylase (aro10) aus Saccharomyces cerevisiae (Vuralhan et al. 2003 und 2005; Kneen et al. 2011) oder durch aro10 mit feaB (Phenylacetaldehyd-Dehydrogenase) zur Produktion von PAPE und 4-APA optimiert. Die gentechnisch verĂ€nderten E. coli-StĂ€mme wurden in SchĂŒttelkolben mit Fed-Batch-Bedingungen kultiviert und mittels HPLC und LC-MS auf l-PAPA, PAPE und 4-APA-Produktion untersucht. In den einfachen SchĂŒttelkolben-Experimenten erzeugte der l-PAPA produzierende Stamm 0,534 ± 0,024 g l-1 l-PAPA aus 5 ± 0,24 g l-1 Glyzerin. Außerdem fĂŒhrte die zusĂ€tzliche EinfĂŒhrung von aro10 und yahK (Aldehyd-Reduktase) in den l-PAPA-produzierenden Stamm zu 0,526 ± 0,025 g l-1 PAPE. DarĂŒber hinaus wurde durch die Überexpression von feaB in den PAPE-produzierenden Stamm ein Titer von 0,458 ± 0,014 g l-1 4-APA ermöglicht. Schließlich wurde durch weitere Stammverbesserungen und Optimierungen der Wachstumsbedingungen mit Glukose/Glyzerol- ZufĂŒtterung der Titer von l-PAPA, PAPE und 4-APA auf etwa 5,5 ± 0,4 g l-1, 2,5 ± 0,15 g l-1 und 3,4 ± 0,3 g l-1 erhöht. Bei anschließender Fed-Batch-Kultivierung mit einem Endvolumen von 12,2 L mit Glyzerin als Kohlenstoffquelle wurde ein End-Titer von 16,7 g l-1 l-PAPA erhalten. Dies entspricht einer Ausbeute von 0,13 l-PAPA / Glycerin (g g-1) und einer Raum-Zeit-Ausbeute von 0,22 g l-1 h-1 l-PAPA ĂŒber den gesamten Prozess. DarĂŒber hinaus wurde ein De-novo Biosyntheseweg fĂŒr die Produktion von 2-Phenylethanol (2-PE)/Tyrosol aus Glucose mit gentechnisch verĂ€nderten E. coli-StĂ€mmen basierend auf der Plasmidexpression konstruiert. Ausgehend von Chorismat, dem direkten VorlĂ€ufer von Phenylpyruvat (PP)/ 4-Hydroxyphenylpyruvat (4-HPP), wurde ein kĂŒnstlicher Ehrlich-Biosyntheseweg in Richtung 2-PE oder Tyrosol generiert (Etschmann et al. 2002). Um einen Plattformstamm fĂŒr die Produktion von 2-PE und Tyrosol aus dem Shikimatweg zu erzeugen, wurde die Gene pheA oder tyrA kodierende Proteine Chorismatmutase/Prephenatdehydratase oder Prephenatdehydrogenase (RĂŒffer et al. 2004; Gottlieb et al. 2014 ) zusĂ€tzlich in E. coli ĂŒberexprimiert. Im nĂ€chsten Schritt wurde der metabolische Fluss durch die Überexpression von aro10 in die 2-PE- und Tyrosol-Produktion gelenkt. Um den Fluss in Richtung des stromaufwĂ€rts gelegenen 2-PE/Tyrosol-weges zu erhöhen, wurden die relevanten Gene der drei geschwindigkeitsbegrenzenden Schritte im Shikimatweg aroF, aroB und aroL, ĂŒberexprimiert. Nach Batch-Kultivierung ergaben diese StĂ€mme 369 ± 25 mg l-1 2-PE und 437 ± 33 mg l-1 Tyrosol aus 4,5 ± 0,21 g l-1 Glukose. Der Endtiter im SchĂŒttelkolben wurde durch eine Glukose-Fed-Batch-Fermentation auf 1,75 ± 0,12 g l-1 2-PE und 1,68 ± 0,19 g l-1 Tyrosol erhöht. Eine anschließende signifikante Steigerung der 2-PE / Tyrosol-Produktion erfolgte durch Anwendung eines In-situ-Verfahrens zur Produktentfernung (ISPR). Diese Zweiphasenextraktion wurde mit verschiedenen organischen Verbindungen untersucht (Etschmann et 2002; SchĂŒgerl und Hubbuch 2005; Astumi et al. 2008; Hu und Xu 2011). In einer anschließenden Glucose-limitierten Fed-Batch-Kultivierung in einem Benchtop-Bioreaktorsystem (0,75 l) wurde ein Endtiter von 3,1 g l-1 2-PE und 3,6 g l-1 Tyrosol mit einer Ausbeute und einem Raum-Zeit-VerhĂ€ltnis von 0,07 g g-1 und 0,03 g 1-1 h-1 fĂŒr 2-PE bzw. 0,08 g g-1 bzw. 0,04 g l-1 h-1 fĂŒr Tyrosol erreicht. Diese Arbeit zeigt, dass die Synthese (im Gramm-Maßstab) von aromatischen Aminen (bzw. l-PAPA, PAPE oder 4-APA) und aromatischen Alkoholen (bzw. 2-PE oder Tyrosol) mit rekombinanten E. coli StĂ€mmen möglich ist

    Production of p-amino-l-phenylalanine (l-PAPA) from glycerol by metabolic grafting of Escherichia coli

    No full text
    Abstract Background The non-proteinogenic aromatic amino acid, p-amino-l-phenylalanine (l-PAPA) is a high-value product with a broad field of applications. In nature, l-PAPA occurs as an intermediate of the chloramphenicol biosynthesis pathway in Streptomyces venezuelae. Here we demonstrate that the model organism Escherichia coli can be transformed with metabolic grafting approaches to result in an improved l-PAPA producing strain. Results Escherichia coli K-12 cells were genetically engineered for the production of l-PAPA from glycerol as main carbon source. To do so, genes for a 4-amino-4-deoxychorismate synthase (pabAB from Corynebacterium glutamicum), and genes encoding a 4-amino-4-deoxychorismate mutase and a 4-amino-4-deoxyprephenate dehydrogenase (papB and papC, both from Streptomyces venezuelae) were cloned and expressed in E. coli W3110 (lab strain LJ110). In shake flask cultures with minimal medium this led to the formation of ca. 43 ± 2 mg l−1 of l-PAPA from 5 g l−1 glycerol. By expression of additional chromosomal copies of the tktA and glpX genes, and of plasmid-borne aroFBL genes in a tyrR deletion strain, an improved l-PAPA producer was obtained which gave a titer of 5.47 ± 0.4 g l−1 l-PAPA from 33.3 g l−1 glycerol (0.16 g l-PAPA/g of glycerol) in fed-batch cultivation (shake flasks). Finally, in a fed-batch fermenter cultivation, a titer of 16.7 g l−1 l-PAPA was obtained which is the highest so far reported value for this non-proteinogenic amino acid. Conclusion Here we show that E. coli is a suitable chassis strain for l-PAPA production. Modifying the flux to the product and improved supply of precursor, by additional gene copies of glpX, tkt and aroFBL together with the deletion of the tyrR gene, increased the yield and titer
    corecore