19 research outputs found

    Explicit Free Parameterization of the Modified Tetrahedron Equation

    Full text link
    The Modified Tetrahedron Equation (MTE) with affine Weyl quantum variables at N-th root of unity is solved by a rational mapping operator which is obtained from the solution of a linear problem. We show that the solutions can be parameterized in terms of eight free parameters and sixteen discrete phase choices, thus providing a broad starting point for the construction of 3-dimensional integrable lattice models. The Fermat curve points parameterizing the representation of the mapping operator in terms of cyclic functions are expressed in terms of the independent parameters. An explicit formula for the density factor of the MTE is derived. For the example N=2 we write the MTE in full detail. We also discuss a solution of the MTE in terms of bosonic continuum functions.Comment: 28 pages, 3 figure

    Ansatz of Hans Bethe for a two-dimensional Bose gas

    Full text link
    The method of q-oscillator lattices, proposed recently in [hep-th/0509181], provides the tool for a construction of various integrable models of quantum mechanics in 2+1 dimensional space-time. In contrast to any one dimensional quantum chain, its two dimensional generalizations -- quantum lattices -- admit different geometrical structures. In this paper we consider the q-oscillator model on a special lattice. The model may be interpreted as a two-dimensional Bose gas. The most remarkable feature of the model is that it allows the coordinate Bethe Ansatz: the p-particles' wave function is the sum of plane waves. Consistency conditions is the set of 2p equations for p one-particle wave vectors. These "Bethe Ansatz" equations are the main result of this paper.Comment: LaTex2e, 12 page

    Ground states of Heisenberg evolution operator in discrete three-dimensional space-time and quantum discrete BKP equations

    Full text link
    In this paper we consider three-dimensional quantum q-oscillator field theory without spectral parameters. We construct an essentially big set of eigenstates of evolution with unity eigenvalue of discrete time evolution operator. All these eigenstates belong to a subspace of total Hilbert space where an action of evolution operator can be identified with quantized discrete BKP equations (synonym Miwa equations). The key ingredients of our construction are specific eigenstates of a single three-dimensional R-matrix. These eigenstates are boundary states for hidden three-dimensional structures of U_q(B_n^1) and U_q(D_n^1)$.Comment: 13 page

    Quantum 2+1 evolution model

    Full text link
    A quantum evolution model in 2+1 discrete space - time, connected with 3D fundamental map R, is investigated. Map R is derived as a map providing a zero curvature of a two dimensional lattice system called "the current system". In a special case of the local Weyl algebra for dynamical variables the map appears to be canonical one and it corresponds to known operator-valued R-matrix. The current system is a kind of the linear problem for 2+1 evolution model. A generating function for the integrals of motion for the evolution is derived with a help of the current system. The subject of the paper is rather new, and so the perspectives of further investigations are widely discussed.Comment: LaTeX, 37page

    The modified tetrahedron equation and its solutions

    Full text link
    A large class of 3-dimensional integrable lattice spin models is constructed. The starting point is an invertible canonical mapping operator in the space of a triple Weyl algebra. This operator is derived postulating a current branching principle together with a Baxter Z-invariance. The tetrahedron equation for this operator follows without further calculations. If the Weyl parameter is taken to be a root of unity, the mapping operator decomposes into a matrix conjugation and a C-number functional mapping. The operator of the matrix conjugation satisfies a modified tetrahedron equation (MTE) in which the "rapidities" are solutions of a classical integrable Hirota-type equation. The matrix elements of this operator can be represented in terms of the Bazhanov-Baxter Fermat curve cyclic functions, or alternatively in terms of Gauss functions. The paper summarizes several recent publications on the subject.Comment: 24 pages, 6 figures using epic/eepic package, Contribution to the proceedings of the 6th International Conference on CFTs and Integrable Models, Chernogolovka, Spetember 2002, reference adde

    The vertex formulation of the Bazhanov-Baxter Model

    Full text link
    In this paper we formulate an integrable model on the simple cubic lattice. The NN -- valued spin variables of the model belong to edges of the lattice. The Boltzmann weights of the model obey the vertex type Tetrahedron Equation. In the thermodynamic limit our model is equivalent to the Bazhanov -- Baxter Model. In the case when N=2N=2 we reproduce the Korepanov's and Hietarinta's solutions of the Tetrahedron equation as some special cases.Comment: 20 pages, LaTeX fil

    Quantum geometry of 3-dimensional lattices

    Full text link
    We study geometric consistency relations between angles on 3-dimensional (3D) circular quadrilateral lattices -- lattices whose faces are planar quadrilaterals inscribable into a circle. We show that these relations generate canonical transformations of a remarkable ``ultra-local'' Poisson bracket algebra defined on discrete 2D surfaces consisting of circular quadrilaterals. Quantization of this structure leads to new solutions of the tetrahedron equation (the 3D analog of the Yang-Baxter equation). These solutions generate an infinite number of non-trivial solutions of the Yang-Baxter equation and also define integrable 3D models of statistical mechanics and quantum field theory. The latter can be thought of as describing quantum fluctuations of lattice geometry. The classical geometry of the 3D circular lattices arises as a stationary configuration giving the leading contribution to the partition function in the quasi-classical limit.Comment: 27 pages, 10 figures. Minor corrections, references adde

    Permutation-type solutions to the Yang-Baxter and other n-simplex equations

    Full text link
    We study permutation type solutions to n-simplex equations, that is, solutions whose R matrix can be written as a product of delta- functions depending linearly on the indices. With this ansatz the D^{n(n+1)} equations of the n-simplex equation reduce to an [n(n+1)/2+1]x[n(n+1)/2+1] matrix equation over Z_D. We have completely analyzed the 2-, 3- and 4-simplex equations in the generic D case. The solutions show interesting patterns that seem to continue to still higher simplex equations.Comment: 20 pages, LaTeX2e. to appear in J. Phys. A: Math. Gen. (1997

    Tetrahedron and 3D reflection equations from quantized algebra of functions

    Full text link
    Soibelman's theory of quantized function algebra A_q(SL_n) provides a representation theoretical scheme to construct a solution of the Zamolodchikov tetrahedron equation. We extend this idea originally due to Kapranov and Voevodsky to A_q(Sp_{2n}) and obtain the intertwiner K corresponding to the quartic Coxeter relation. Together with the previously known 3-dimensional (3D) R matrix, the K yields the first ever solution to the 3D analogue of the reflection equation proposed by Isaev and Kulish. It is shown that matrix elements of R and K are polynomials in q and that there are combinatorial and birational counterparts for R and K. The combinatorial ones arise either at q=0 or by tropicalization of the birational ones. A conjectural description for the type B and F_4 cases is also given.Comment: 26 pages. Minor correction
    corecore