360 research outputs found
Regularity of the Optimal Stopping Problem for Jump Diffusions
The value function of an optimal stopping problem for jump diffusions is
known to be a generalized solution of a variational inequality. Assuming that
the diffusion component of the process is nondegenerate and a mild assumption
on the singularity of the L\'{e}vy measure, this paper shows that the value
function of this optimal stopping problem on an unbounded domain with
finite/infinite variation jumps is in with . As a consequence, the smooth-fit property holds.Comment: To Appear in the SIAM Journal on Control and Optimizatio
On Zero-Sum Stochastic Differential Games
We generalize the results of Fleming and Souganidis (1989) on zero sum
stochastic differential games to the case when the controls are unbounded. We
do this by proving a dynamic programming principle using a covering argument
instead of relying on a discrete approximation (which is used along with a
comparison principle by Fleming and Souganidis). Also, in contrast with Fleming
and Souganidis, we define our pay-off through a doubly reflected backward
stochastic differential equation. The value function (in the degenerate case of
a single controller) is closely related to the second order doubly reflected
BSDEs.Comment: Key Words: Zero-sum stochastic differential games, Elliott-Kalton
strategies, dynamic programming principle, stability under pasting, doubly
reflected backward stochastic differential equations, viscosity solutions,
obstacle problem for fully non-linear PDEs, shifted processes, shifted SDEs,
second-order doubly reflected backward stochastic differential equation
- β¦