55,320 research outputs found
The X(3872) at the Tevatron
I report results on the X(3872) from the Tevatron. Mass and other properties
have been studied, with a focus on new results on the dipion mass spectrum in X
-> J/PsiPi^+Pi^- decays. Dipions favor interpreting the decay as J/PsiRho,
implying even C-parity for the X. Modeling uncertainties do not allow
distinguishing between S- and P-wave decays of the J/PsiRho mode. Effects of
Rho-Omega interference in X decay are also introduced.Comment: Contribution to PANIC05, Santa Fe, 24-28 October 2005 (4 pages, 6
plots
Microscopic Approach to Nucleon Spectra in Hypernuclear Non-Mesonic Weak Decay
A consistent microscopic diagrammatic approach is applied for the first time
to the calculation of the nucleon emission spectra in the non-mesonic weak
decay of Lambda-hypernuclei. We adopt a nuclear matter formalism extended to
finite nuclei via the local density approximation, a one--meson exchange weak
transition potential and a Bonn nucleon-nucleon strong potential. Ground state
correlations and final state interactions, at second order in the
nucleon--nucleon interaction, are introduced on the same footing for all the
isospin channels of one- and two-nucleon induced decays. Single and
double--coincidence nucleon spectra are predicted for 12_Lambda^C and compared
with recent KEK and FINUDA data. The key role played by quantum interference
terms allows us to improve the predictions obtained with intranuclear cascade
codes. Discrepancies with data remain for proton emission.Comment: 11 pages, 6 figures, 2 tables. To be published in Physics Letters
On the role of ground state correlations in hypernuclear non-mesonic weak decay
The contribution of ground state correlations (GSC) to the non--mesonic weak
decay of C and other medium to heavy hypernuclei is studied
within a nuclear matter formalism implemented in a local density approximation.
We adopt a weak transition potential including the exchange of the complete
octets of pseudoscalar and vector mesons as well as a residual strong
interaction modeled on the Bonn potential. Leading GSC contributions, at first
order in the residual strong interaction, are introduced on the same footing
for all isospin channels of one-- and two--nucleon induced decays. Together
with fermion antisymmetrization, GSC turn out to be important for an accurate
determination of the decay widths. Besides opening the two--nucleon stimulated
decay channels, for C GSC are responsible for 14% of the rate
while increasing the ratio by 4%. Our final
results for C are: ,
and . The
saturation property of with increasing hypernuclear mass
number is clearly observed. The agreement with data of our predictions for
, and is rather good.Comment: 32 pages, 9 figure
- …