5 research outputs found
Department of Pathology, Thomas Jefferson University, Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors.
BACKGROUND: Although numerous mouse models of breast carcinomas have been developed, we do not know the extent to which any faithfully represent clinically significant human phenotypes. To address this need, we characterized mammary tumor gene expression profiles from 13 different murine models using DNA microarrays and compared the resulting data to those from human breast tumors. RESULTS: Unsupervised hierarchical clustering analysis showed that six models (TgWAP-Myc, TgMMTV-Neu, TgMMTV-PyMT, TgWAP-Int3, TgWAP-Tag, and TgC3(1)-Tag) yielded tumors with distinctive and homogeneous expression patterns within each strain. However, in each of four other models (TgWAP-T121, TgMMTV-Wnt1, Brca1Co/Co;TgMMTV-Cre;p53+/- and DMBA-induced), tumors with a variety of histologies and expression profiles developed. In many models, similarities to human breast tumors were recognized, including proliferation and human breast tumor subtype signatures. Significantly, tumors of several models displayed characteristics of human basal-like breast tumors, including two models with induced Brca1 deficiencies. Tumors of other murine models shared features and trended towards significance of gene enrichment with human luminal tumors; however, these murine tumors lacked expression of estrogen receptor (ER) and ER-regulated genes. TgMMTV-Neu tumors did not have a significant gene overlap with the human HER2+/ER- subtype and were more similar to human luminal tumors. CONCLUSION: Many of the defining characteristics of human subtypes were conserved among the mouse models. Although no single mouse model recapitulated all the expression features of a given human subtype, these shared expression features provide a common framework for an improved integration of murine mammary tumor models with human breast tumors
Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors
Comparison of mammary tumor gene-expression profiles from thirteen murine models using microarrays and with that of human breast tumors showed that many of the defining characteristics of human subtypes were conserved among mouse models
Unsupervised cluster analysis of the combined gene expression data for 232 human breast tumor samples and 122 mouse mammary tumor samples
<p><b>Copyright information:</b></p><p>Taken from "Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors"</p><p>http://genomebiology.com/2007/8/5/R76</p><p>Genome Biology 2007;8(5):R76-R76.</p><p>Published online 10 May 2007</p><p>PMCID:PMC1929138.</p><p></p> A color-coded matrix below the dendrogram identifies each sample; the first two rows show clinical ER and HER2 status, respectively, with red = positive, green = negative, and gray = not tested; the third row includes all human samples colored by intrinsic subtype as determined from Additional data file 6; red = basal-like, blue = luminal, pink = HER2+/ER-, yellow = claudin-low and green = normal breast-like. The remaining rows correspond to murine models indicated at the right. A gene cluster containing basal epithelial genes. A luminal epithelial gene cluster that includes and . A second luminal cluster containing 8 and 18. Proliferation gene cluster. Interferon-regulated genes. Fibroblast/mesenchymal enriched gene cluster. The amplicon cluster. See Additional data file 5 for the complete cluster diagram