12 research outputs found
COMET: A Recipe for Learning and Using Large Ensembles on Massive Data
COMET is a single-pass MapReduce algorithm for learning on large-scale data.
It builds multiple random forest ensembles on distributed blocks of data and
merges them into a mega-ensemble. This approach is appropriate when learning
from massive-scale data that is too large to fit on a single machine. To get
the best accuracy, IVoting should be used instead of bagging to generate the
training subset for each decision tree in the random forest. Experiments with
two large datasets (5GB and 50GB compressed) show that COMET compares favorably
(in both accuracy and training time) to learning on a subsample of data using a
serial algorithm. Finally, we propose a new Gaussian approach for lazy ensemble
evaluation which dynamically decides how many ensemble members to evaluate per
data point; this can reduce evaluation cost by 100X or more
Recommended from our members
Yucca Mountain licensing support network archive assistant.
This report describes the Licensing Support Network (LSN) Assistant--a set of tools for categorizing e-mail messages and documents, and investigating and correcting existing archives of categorized e-mail messages and documents. The two main tools in the LSN Assistant are the LSN Archive Assistant (LSNAA) tool for recategorizing manually labeled e-mail messages and documents and the LSN Realtime Assistant (LSNRA) tool for categorizing new e-mail messages and documents. This report focuses on the LSNAA tool. There are two main components of the LSNAA tool. The first is the Sandia Categorization Framework, which is responsible for providing categorizations for documents in an archive and storing them in an appropriate Categorization Database. The second is the actual user interface, which primarily interacts with the Categorization Database, providing a way for finding and correcting categorizations errors in the database. A procedure for applying the LSNAA tool and an example use case of the LSNAA tool applied to a set of e-mail messages are provided. Performance results of the categorization model designed for this example use case are presented
Recommended from our members
Enabling immersive simulation.
The object of the 'Enabling Immersive Simulation for Complex Systems Analysis and Training' LDRD has been to research, design, and engineer a capability to develop simulations which (1) provide a rich, immersive interface for participation by real humans (exploiting existing high-performance game-engine technology wherever possible), and (2) can leverage Sandia's substantial investment in high-fidelity physical and cognitive models implemented in the Umbra simulation framework. We report here on these efforts. First, we describe the integration of Sandia's Umbra modular simulation framework with the open-source Delta3D game engine. Next, we report on Umbra's integration with Sandia's Cognitive Foundry, specifically to provide for learning behaviors for 'virtual teammates' directly from observed human behavior. Finally, we describe the integration of Delta3D with the ABL behavior engine, and report on research into establishing the theoretical framework that will be required to make use of tools like ABL to scale up to increasingly rich and realistic virtual characters
Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study
Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world.
Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231.
Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001).
Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication
Unifying Collaborative and Content-Based Filtering
Collaborative and content-based filtering are two paradigms that have been applied in the context of recommender systems and user preference prediction. This paper proposes a novel, unified approach that systematically integrates all available training information such as past user-item ratings as well as attributes of items or users to learn a prediction function. The key ingredient of our method is the design of a suitable kernel or similarity function between user-item pairs that allows simultaneous generalization across the user and item dimensions. We propose an on-line algorithm (JRank) that generalizes perceptron learning. Experimental results on the EachMovie data set show significant improvements over standard approaches
Workshop on Learning and Evaluating Recommendations with Impressions (LERI)
This volume contains the papers presented at the Workshop on Learning and Evaluating Recommendations with Impressions (LERI), held in conjunction with the 17th ACM Conference on Recommender Systems (RecSys 2023). Recommender systems typically rely on past user interactions as the primary source of information for making predictions. However, although highly informative, past user interactions are strongly biased. Impressions, on the other hand, are a new source of information that indicate the items displayed on screen when the user interacted (or not) with them, and have the potential to impact the field of recommender systems in several ways. Early research on impressions was constrained by the limited availability of public datasets, but this is rapidly changing and, as a consequence, interest in impressions has increased. Impressions present new research questions and opportunities, but also bring new challenges. Several works propose to use impressions as part of recommender models in various ways and discuss their information content. Others explore their potential in off-policy-estimation and reinforcement learning. Overall, the interest of the community is growing, but efforts in this direction remain disconnected. Therefore, one of the aims of the LERI workshop is to bring the community togethe
Incremental learning for automated knowledge capture
People responding to high-consequence national-security situations need tools to help them make the right decision quickly. The dynamic, time-critical, and ever-changing nature of these situations, especially those involving an adversary, require models of decision support that can dynamically react as a situation unfolds and changes. Automated knowledge capture is a key part of creating individualized models of decision making in many situations because it has been demonstrated as a very robust way to populate computational models of cognition. However, existing automated knowledge capture techniques only populate a knowledge model with data prior to its use, after which the knowledge model is static and unchanging. In contrast, humans, including our national-security adversaries, continually learn, adapt, and create new knowledge as they make decisions and witness their effect. This artificial dichotomy between creation and use exists because the majority of automated knowledge capture techniques are based on traditional batch machine-learning and statistical algorithms. These algorithms are primarily designed to optimize the accuracy of their predictions and only secondarily, if at all, concerned with issues such as speed, memory use, or ability to be incrementally updated. Thus, when new data arrives, batch algorithms used for automated knowledge capture currently require significant recomputation, frequently from scratch, which makes them ill suited for use in dynamic, timecritical, high-consequence decision making environments. In this work we seek to explore and expand upon the capabilities of dynamic, incremental models that can adapt to an ever-changing feature space
Recommended from our members
Human performance modeling for system of systems analytics.
A Laboratory-Directed Research and Development project was initiated in 2005 to investigate Human Performance Modeling in a System of Systems analytic environment. SAND2006-6569 and SAND2006-7911 document interim results from this effort; this report documents the final results. The problem is difficult because of the number of humans involved in a System of Systems environment and the generally poorly defined nature of the tasks that each human must perform. A two-pronged strategy was followed: one prong was to develop human models using a probability-based method similar to that first developed for relatively well-understood probability based performance modeling; another prong was to investigate more state-of-art human cognition models. The probability-based modeling resulted in a comprehensive addition of human-modeling capability to the existing SoSAT computer program. The cognitive modeling resulted in an increased understanding of what is necessary to incorporate cognition-based models to a System of Systems analytic environment