24,426 research outputs found

    Healthy Steps at 15: The Past and Future of an Innovative Preventive Care Model for Young Children

    Get PDF
    Evaluates a model for preventive pediatric care for children up to age 3 that relies on mid-level specialists, including the program's spread, operating costs, funding, challenges, and potential effects of healthcare reform. Includes site profiles

    No Evidence for [O III] Variability in Mrk 142

    Full text link
    Using archival data from the 2008 Lick AGN Monitoring Project, Zhang & Feng (2016) claimed to find evidence for flux variations in the narrow [O III] emission of the Seyfert 1 galaxy Mrk 142 over a two-month time span. If correct, this would imply a surprisingly compact size for the narrow-line region. We show that the claimed [O III] variations are merely the result of random errors in the overall flux calibration of the spectra. The data do not provide any support for the hypothesis that the [O III] flux was variable during the 2008 monitoring period.Comment: Response to Zhang & Feng 2016, MNRAS Letters, 457, L64 (arXiv:1512.07673). Accepted for publication in MNRAS Letters. 5 pages, 2 figure

    Unambiguous interpretation of atomically resolved force microscopy images of an insulator

    Get PDF
    The (111) surface of CaF 2 was imaged with dynamic mode scanning force microscopy and modeled using atomistic simulation. Both experiment and theory showed a clear triangular contrast pattern in images, and theory demonstrated that the contrast pattern is due to the interaction of a positive electrostatic potential tip with fluorine ions in the two topmost surface layers. We find a good agreement of position and relative height of scan line features between theory and experiment and thus establish for the first time an unambiguous identification of sublattices of an insulator imaged by force microscopy

    Iron Emission in the z=6.4 Quasar SDSS J114816.64+525150.3

    Full text link
    We present near-infrared J and K-band spectra of the z = 6.4 quasar SDSS J114816.64+525150.3 obtained with the NIRSPEC spectrograph at the Keck-II telescope, covering the rest-frame spectral regions surrounding the C IV 1549 and Mg II 2800 emission lines. The iron emission blend at rest wavelength 2900-3000 A is clearly detected and its strength appears nearly indistinguishable from that of typical quasars at lower redshifts. The Fe II / Mg II ratio is also similar to values found for lower-redshift quasars, demonstrating that there is no strong evolution in Fe/alpha broad-line emission ratios even out to z=6.4. In the context of current models for iron enrichment from Type Ia supernovae, this implies that the SN Ia progenitor stars formed at z > 10. We apply the scaling relations of Vestergaard and of McLure & Jarvis to estimate the black hole mass from the widths of the C IV and Mg II emission lines and the ultraviolet continuum luminosity. The derived mass is in the range (2-6)x10^9 solar masses, with an additional uncertainty of a factor of 3 due to the intrinsic scatter in the scaling relations. This result is in agreement with the previous mass estimate of 3x10^9 solar masses by Willott, McLure, & Jarvis, and supports their conclusion that the quasar is radiating close to its Eddington luminosity.Comment: To appear in ApJ Letter

    Reference models for thermospheric NO

    Get PDF
    Nitric oxide has been measured with an ultraviolet spectrometer on the polar-orbiting satellite Solar Mesosphere Explorer (SME) for the period January 1982 to August 1986. The nitric oxide database contains densities at all latitudes sorted into 5 degree bins and at altitudes between 100 and 140 km sorted into 3.3 km-bins. The largest densities occur at latitudes in the auroral zones where the density varies as a function of geomagnetic activity. Variations of a factor of 10 occur between times of intense activity and quiet times. At low latitudes, the nitric oxide density at 110 km varies from a mean value of 3 times 10(exp 7) molecules per cubic cm in January 1982 to a mean value of 4 times 10(exp 6) molecules per cubic cm during solar minimum conditions in 1986. In addition, the low-latitude nitric oxide density varies plus or minus 50 percent with a period of 27 days during times of high solar activity

    Intermediate-mass Black Holes in Galactic Nuclei

    Get PDF
    We present the first homogeneous sample of intermediate-mass black hole candidates in active galactic nuclei. Starting with broad-line active nuclei from the Sloan Digital Sky Survey, we use the linewidth-luminosity-mass scaling relation to select a sample of 19 galaxies in the mass range M_BH ~ 8 x 10^4 - 10^6 solar masses. In contrast to the local active galaxy population, the host galaxies are ~1 mag fainter than M* and thus are probably late-type systems. The active nuclei are also faint, with M_g ~ -15 to -18 mag, while the bolometric luminosities are close to the Eddington limit. The spectral properties of the sample are compared to the related class of objects known as narrow-line Seyfert 1 galaxies. We discuss the importance of our sample as observational analogues of primordial black holes, contributors to the integrated signal for future gravitational wave experiments, and as a valuable tool in the calibration of the M-sigma relation.Comment: 4 pages, 4 figures. To appear in "The Interplay among Black Holes, Stars and ISM in Galactic Nuclei," Proc. IAU 222 (Gramado, Brazil), eds Th. Storchi Bergmann, L.C. Ho, H.R. Schmit

    The Carnegie-Irvine Galaxy Survey. V. Statistical study of bars and buckled bars

    Full text link
    Simulations have shown that bars are subject to a vertical buckling instability that transforms thin bars into boxy or peanut-shaped structures, but the physical conditions necessary for buckling to occur are not fully understood. We use the large sample of local disk galaxies in the Carnegie-Irvine Galaxy Survey to examine the incidence of bars and buckled bars across the Hubble sequence. Depending on the disk inclination angle (ii), a buckled bar reveals itself as either a boxy/peanut-shaped bulge (at high ii) or as a barlens structure (at low ii). We visually identify bars, boxy/peanut-shaped bulges, and barlenses, and examine the dependence of bar and buckled bar fractions on host galaxy properties, including Hubble type, stellar mass, color, and gas mass fraction. We find that the barred and unbarred disks show similar distributions in these physical parameters. The bar fraction is higher (70\%--80\%) in late-type disks with low stellar mass (M<1010.5MM_{*} < 10^{10.5}\, M_{\odot}) and high gas mass ratio. In contrast, the buckled bar fraction increases to 80\% toward massive and early-type disks (M>1010.5MM_{*} > 10^{10.5}\, M_{\odot}), and decreases with higher gas mass ratio. These results suggest that bars are more difficult to grow in massive disks that are dynamically hotter than low-mass disks. However, once a bar forms, it can easily buckle in the massive disks, where a deeper potential can sustain the vertical resonant orbits. We also find a probable buckling bar candidate (ESO 506-G004) that could provide further clues to understand the timescale of the buckling process.Comment: 9 pages, 7 figures, 2 tables. Accepted for publication in The Astrophysical Journa

    The M87 Black Hole Mass From Gas-Dynamical Models Of Space Telescope Imaging Spectrograph Observations

    Get PDF
    The supermassive black hole of M87 is one of the most massive black holes known and has been the subject of several stellar and gas-dynamical mass measurements; however, the most recent revision to the stellar-dynamical black hole mass measurement is a factor of about two larger than the previous gas-dynamical determinations. Here, we apply comprehensive gas-dynamical models that include the propagation of emission-line profiles through the telescope and spectrograph optics to new Space Telescope Imaging Spectrograph observations from the Hubble Space Telescope. Unlike the previous gas-dynamical studies of M87, we map out the complete kinematic structure of the emission-line disk within similar to 40 pc from the nucleus, and find that a small amount of velocity dispersion internal to the gas disk is required to match the observed line widths. We examine a scenario in which the intrinsic velocity dispersion provides dynamical support to the disk, and determine that the inferred black hole mass increases by only 6%. Incorporating this effect into the error budget, we ultimately measure a mass of M-BH = (3.5(-0.7)(+0.9)) x 10(9)M circle dot (68% confidence). Our gas-dynamical black hole mass continues to differ from the most recent stellar-dynamical mass by a factor of two, underscoring the need for carrying out more cross-checks between the two main black hole mass measurement methods.NSF Astronomy and Astrophysics Postdoctoral Fellowship 1102845Space Telescope Science Institute 12162NASA NAS 5-26555NSF AST-1108835Astronom

    Navier-Stokes computations for circulation control airfoils

    Get PDF
    Navier-Stokes computations of subsonic to transonic flow past airfoils with augmented lift due to rearward jet blowing over a curved trailing edge are presented. The approach uses a spiral grid topology. Solutions are obtained using a Navier-Stokes code which employs an implicit finite difference method, an algebraic turbulence model, and developments which improve stability, convergence, and accuracy. Results are compared against experiments for no jet blowing and moderate jet pressures and demonstrate the capability to compute these complicated flows
    corecore