82 research outputs found

    Plant Peroxisomes: Biogenesis and Function

    Get PDF
    Peroxisomes are eukaryotic organelles that are highly dynamic both in morphology and metabolism. Plant peroxisomes are involved in numerous processes, including primary and secondary metabolism, development, and responses to abiotic and biotic stresses. Considerable progress has been made in the identification of factors involved in peroxisomal biogenesis, revealing mechanisms that are both shared with and diverged from non-plant systems. Furthermore, recent advances have begun to reveal an unexpectedly large plant peroxisomal proteome and have increased our understanding of metabolic pathways in peroxisomes. Coordination of the biosynthesis, import, biochemical activity, and degradation of peroxisomal proteins allows for highly dynamic responses of peroxisomal metabolism to meet the needs of a plant. Knowledge gained from plant peroxisomal research will be instrumental to fully understanding the organelleďľ’s dynamic behavior and defining peroxisomal metabolic networks, thus allowing the development of molecular strategies for rational engineering of plant metabolism, biomass production, stress tolerance, and pathogen defense

    Genome-Scale Networks Link Neurodegenerative Disease Genes to α-Synuclein through Specific Molecular Pathways

    Get PDF
    Numerous genes and molecular pathways are implicated in neurodegenerative proteinopathies, but their inter-relationships are poorly understood. We systematically mapped molecular pathways underlying the toxicity of alpha-synuclein (α-syn), a protein central to Parkinson's disease. Genome-wide screens in yeast identified 332 genes that impact α-syn toxicity. To “humanize” this molecular network, we developed a computational method, TransposeNet. This integrates a Steiner prize-collecting approach with homology assignment through sequence, structure, and interaction topology. TransposeNet linked α-syn to multiple parkinsonism genes and druggable targets through perturbed protein trafficking and ER quality control as well as mRNA metabolism and translation. A calcium signaling hub linked these processes to perturbed mitochondrial quality control and function, metal ion transport, transcriptional regulation, and signal transduction. Parkinsonism gene interaction profiles spatially opposed in the network (ATP13A2/PARK9 and VPS35/PARK17) were highly distinct, and network relationships for specific genes (LRRK2/PARK8, ATXN2, and EIF4G1/PARK18) were confirmed in patient induced pluripotent stem cell (iPSC)-derived neurons. This cross-species platform connected diverse neurodegenerative genes to proteinopathy through specific mechanisms and may facilitate patient stratification for targeted therapy. Keywords: alpha-synuclein; iPS cell; Parkinson’s disease; stem cell; mRNA translation; RNA-binding protein; LRRK2; VPS35; vesicle trafficking; yeas

    Plant peroxisomes: recent discoveries in functional complexity, organelle homeostasis, and morphological dynamics

    No full text
    Peroxisomes are essential for life in plants. These organelles house a variety of metabolic processes that generate and inactivate reactive oxygen species. Our knowledge of pathways and mechanisms that depend on peroxisomes and their constituent enzymes continues to grow, and in this review we highlight recent advances in understanding the identity and biological functions of peroxisomal enzymes and metabolic processes. We also review how peroxisomal matrix and membrane proteins enter the organelle from their sites of synthesis. Peroxisome homeostasis is regulated by specific degradation mechanisms, and we discuss the contributions of specialized autophagy and a peroxisomal protease to the degradation of entire peroxisomes and peroxisomal enzymes that are damaged or superfluous. Finally, we review how peroxisomes can flexibly change their morphology to facilitate inter-organellar contacts

    A Receptor for Auxin

    No full text
    • …