1,011 research outputs found

    Development of low and high birefringence optical fibres

    No full text
    The polarization properties of single-mode optical fibers are easily modified by environmental factors, While this can be exploited in a number of fiber sensor devices. it can be troublesome in applications where a stable output polarization-state is required. Fibers with both low and high birefringence have been developed to enhance or diminish their environmental sensitivity, and recent progress in each area is reviewed. Low-birefringence fibers are described which are made by spinning the preform during the draw. In addition. developments in high-birefringence fibers which maintain a polarization state over long lengths are summarized. The effect on performance of external factors such as bends, transverse pressure, and twists is analyzed. Consideration is also given to polarization mode-dispersion as a potential limiting factor in ultrahigh bandwidth systems

    The stress-optic effect in optical fibres

    No full text
    The importance of the photoelastic effect in controlling polarization in optical fibers is discussed. Measurements of the stress-optic coefficient, its dispersion, and temperature dependence are reported using a fiber measurement method. The results compare closely to data obtained for bulk silica by an extrapolation technique. It is shown that the dispersion of the stress-optic coefficient can have a significant effect on the performance of birefringent fibers and of fiber birefringent devices. Furthermore, the temperature dependence is sufficiently large to be troublesome in fiber sensors

    Measurements of fibre polarisation properties using a photo-elastic modulator

    No full text
    Single-mode fibres with controlled polarisation properties are required for many fibre applications. For example, high-birefringence fibres are able to transmit linearly-polarised light, a property which is useful in interferometric fibre sensors and in coherent transmission systems. Low-birefringence fibres, on the other hand, have negligible intrinsic birefringence and are suited to conventional communications, polarisation-control devices and polarimetric sensors

    Birefringence testing in single-mode fibres manufactured with controlled polarisation characteristics

    No full text
    Single-mode fibres with well-defined polarisation properties are required to interface to integrated-optical components and in fibre sensors and the Faraday current monitor. The development of fibres with closely controlled polarisation characteristics is critically dependent on the ability to accurately measure and interpret complex birefringence properties. A number of test methods for this purpose have been investigated and are described in this paper, together with an indication of the precautions necessary to minimise external effects

    Synthesis of simulant ‘lava-like’ fuel containing materials (LFCM) from the Chernobyl reactor Unit 4 meltdown

    Get PDF
    A preliminary investigation of the synthesis and characterization of simulant ‘lava-like’ fuel containing materials (LFCM), as low activity analogues of LFCM produced by the melt down of Chernobyl Unit 4. Simulant materials were synthesized by melting batched reagents in a tube furnace at 1500 °C, under reducing atmosphere with controlled cooling to room temperature, to simulate conditions of lava formation. Characterization using XRD and SEM-EDX identified several crystalline phases including ZrO2, UOx and solid solutions with spherical metal particles encapsulated by a glassy matrix. The UOX and ZrO2 phase morphology was very diverse comprising of fused crystals to dendritic crystallites from the crystallization of uranium initially dissolved in the glass phase. This project aims to develop simulant LFCM to assess the durability of Chernobyl lavas and to determine the rate of dissolution, behavior and evolution of these materials under shelter conditions

    The integrated density of states of the random graph Laplacian

    Full text link
    We analyse the density of states of the random graph Laplacian in the percolating regime. A symmetry argument and knowledge of the density of states in the nonpercolating regime allows us to isolate the density of states of the percolating cluster (DSPC) alone, thereby eliminating trivially localised states due to finite subgraphs. We derive a nonlinear integral equation for the integrated DSPC and solve it with a population dynamics algorithm. We discuss the possible existence of a mobility edge and give strong evidence for the existence of discrete eigenvalues in the whole range of the spectrum.Comment: 4 pages, 1 figure. Supplementary material available at http://www.theorie.physik.uni-goettingen.de/~aspel/data/spectrum_supplement.pd

    Synthesis, characterisation and corrosion behaviour of simulant Chernobyl nuclear meltdown materials

    Get PDF
    Understanding the physical and chemical properties of materials arising from nuclear meltdowns, such as the Chernobyl and Fukushima accidents, is critical to supporting decommissioning operations and reducing the hazard to personnel and the environment surrounding the stricken reactors. Relatively few samples of meltdown materials are available for study, and their analysis is made challenging due to the radiation hazard associated with handling them. In this study, small-scale batches of low radioactivity (i.e., containing depleted uranium only) simulants for Chernobyl lava-like fuel-containing materials (LFCMs) have been prepared, and were found to closely approximate the microstructure and mineralogy of real LFCM. The addition of excess of ZrO2 to the composition resulted in the first successful synthesis of high uranium–zircon (chernobylite) by crystallisation from a glass melt. Use of these simulant materials allowed further analysis of the thermal characteristics of LFCM and the corrosion kinetics, giving results that are in good agreement with the limited available literature on real samples. It should, therefore, be possible to use these new simulant materials to support decommissioning operations of nuclear reactors post-accident

    Missing sea level rise in southeastern Greenland during and since the Little Ice Age

    Get PDF
    The Greenland Ice Sheet has been losing mass at an accelerating rate over the past 2 decades. Understanding ice mass and glacier changes during the preceding several hundred years prior to geodetic measurements is more difficult because evidence of past ice extent in many places was later overridden. Salt marshes provide the only continuous records of relative sea level (RSL) from close to the Greenland Ice Sheet that span the period of time during and since the Little Ice Age (LIA) and can be used to reconstruct ice mass gain and loss over recent centuries. Salt marsh sediments collected at the mouth of Dronning Marie Dal, close to the Greenland Ice Sheet margin in southeastern Greenland, record RSL changes over the past ca. 300 years through changing sediment and diatom stratigraphy. These RSL changes record a combination of processes that are dominated by local and regional changes in Greenland Ice Sheet mass balance during this critical period that spans the maximum of the LIA and 20th-century warming. In the early part of the record (1725–1762 CE) the rate of RSL rise is higher than reconstructed from the closest isolation basin at Timmiarmiut, but between 1762 and 1880 CE the RSL rate is within the error range of the rate of RSL change recorded in the isolation basin. RSL begins to slowly fall around 1880 CE, with a total amount of RSL fall of 0.09±0.1 m in the last 140 years. Modelled RSL, which takes into account contributions from post-LIA Greenland Ice Sheet glacio-isostatic adjustment (GIA), ongoing deglacial GIA, the global non-ice sheet glacial melt fingerprint, contributions from thermosteric effects, the Antarctic mass loss sea level fingerprint and terrestrial water storage, overpredicts the amount of RSL fall since the end of the LIA by at least 0.5 m. The GIA signal caused by post-LIA Greenland Ice Sheet mass loss is by far the largest contributor to this modelled RSL, and error in its calculation has a large impact on RSL predictions at Dronning Marie Dal. We cannot reconcile the modelled RSL and the salt marsh observations, even when moving the termination of the LIA to 1700 CE and reducing the post-LIA Greenland mass loss signal by 30 %, and a “budget residual” of + ~ 3 mm yr−1 since the end of the LIA remains unexplained. This new RSL record backs up other studies that suggest that there are significant regional differences in the timing and magnitude of the response of the Greenland Ice Sheet to the climate shift from the LIA into the 20th century

    Coping with the effects of fear of failure in young elite athletes

    Get PDF
    Coping with stress is an important element in effective functioning at the elite level in sports, and fear of failure (FF) is an example of a stressor that athletes experience. Three issues underpin the present preliminary study. First, the prevalence of problems attributed to FF in achievement settings. Second, sport is a popular and significant achievement domain for children and adolescents. Third, there is a lack of research on FF in sport among this population. Therefore, the objectives of the study were to examine the effects of FF on young athletes and to find out their coping responses to the effects of FF. Interviews were conducted individually with nine young elite ath­letes (5 males, 4 females; ages 14-17 years). It was inferred from the data that FF affected the athletes' well-being, interpersonal behavior, sport performance, and schoolwork. The athletes employed a combination of problem-focused, emotion-fo­cused, and avoidance-focused coping strategies, with avoidance strategies being the most frequently reported

    First Stars. II. Evolution with mass loss

    Full text link
    The first stars are assumed to be predominantly massive. Although, due to the low initial abundances of heavy elements the line-driven stellar winds are supposed to be inefficient in the first stars, these stars may loose a significant amount of their initial mass by other mechanisms. In this work, we study the evolution with a prescribed mass loss rate of very massive, galactic and pregalactic, Population III stars, with initial metallicities Z=106Z=10^{-6} and Z=109Z=10^{-9}, respectively, and initial masses 100, 120, 150, 200, and 250M\,M_{\odot} during the hydrogen and helium burning phases. The evolution of these stars depends on their initial mass, metallicity and the mass loss rate. Low metallicity stars are hotter, compact and luminous, and they are shifted to the blue upper part in the Hertzprung-Russell diagram. With mass loss these stars provide an efficient mixing of nucleosynthetic products, and depending on the He-core mass their final fate could be either pair-instability supernovae or energetic hypernovae. These stars contributed to the reionization of the universe and its enrichment with heavy elements, which influences the subsequent star formation properties.Comment: Accepted for publication in Astrophysics & Space Science. 15 pages, 18 figure
    corecore