150 research outputs found

    Quasi-Fuchsian AdS representations are Anosov

    Get PDF
    In a recent paper, Q. M\'erigot proved that representations in SO(2,n) of uniform lattices of SO(1,n) which are Anosov in the sense of Labourie are quasi-Fuchsian, i.e. are faithfull, discrete, and preserve an acausal subset in the boundary of anti-de Sitter space. In the present paper, we prove the reverse implication. It also includes: -- A construction of Dirichlet domains in the context of anti-de Sitter geometry, -- A proof that spatially compact globally hyperbolic anti-de Sitter spacetimes with acausal limit set admit locally CAT(-1) Cauchy hypersurfaces

    Pseudo-Anosov flows in toroidal manifolds

    Full text link
    We first prove rigidity results for pseudo-Anosov flows in prototypes of toroidal 3-manifolds: we show that a pseudo-Anosov flow in a Seifert fibered manifold is up to finite covers topologically equivalent to a geodesic flow and we show that a pseudo-Anosov flow in a solv manifold is topologically equivalent to a suspension Anosov flow. Then we study the interaction of a general pseudo-Anosov flow with possible Seifert fibered pieces in the torus decomposition: if the fiber is associated with a periodic orbit of the flow, we show that there is a standard and very simple form for the flow in the piece using Birkhoff annuli. This form is strongly connected with the topology of the Seifert piece. We also construct a large new class of examples in many graph manifolds, which is extremely general and flexible. We construct other new classes of examples, some of which are generalized pseudo-Anosov flows which have one prong singularities and which show that the above results in Seifert fibered and solvable manifolds do not apply to one prong pseudo-Anosov flows. Finally we also analyse immersed and embedded incompressible tori in optimal position with respect to a pseudo-Anosov flow.Comment: 44 pages, 4 figures. Version 2. New section 9: questions and comments. Overall revision, some simplified proofs, more explanation

    Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes, Application to the Minkowski problem in the Minkowski space

    Full text link
    We study the existence of surfaces with constant or prescribed Gauss curvature in certain Lorentzian spacetimes. We prove in particular that every (non-elementary) 3-dimensional maximal globally hyperbolic spatially compact spacetime with constant non-negative curvature is foliated by compact spacelike surfaces with constant Gauss curvature. In the constant negative curvature case, such a foliation exists outside the convex core. The existence of these foliations, together with a theorem of C. Gerhardt, yield several corollaries. For example, they allow to solve the Minkowski problem in the 3-dimensional Minkowski space for datas that are invariant under the action of a co-compact Fuchsian group
    • …
    corecore