2,182 research outputs found

    String Theory

    Full text link
    This is a rendering of a review talk on the state of String Theory, given at the EPS-2003 Conference, intended for a wide audience of experimental and theoretical physicists. It emphasizes general ideas rather than technical aspects.Comment: 11 pages. Contribution to the EPS2003 conferenc

    Identification of slow relaxing spin components by pulse EPR techniques in graphene-related materials

    Get PDF
    Electron Paramagnetic Resonance (EPR) is a powerful technique that is suitable to study graphene-related materials. The challenging ability requested to the spectroscopy is its capability to resolve the variety of structures, relatively similar, that are obtained in materials produced through different methods, but that also coexist inside a single sample. In general, because of the intrinsic inhomogeneity of the samples, the EPR spectra are therefore a superposition of spectra coming from different structures. We show that by pulse EPR techniques (echo-detected EPR, ESEEM and Mims ENDOR) we can identify and characterize species with slow spin relaxing properties. These species are generally called molecular states, and are likely small pieces of graphenic structures of limited dimensions, thus conveniently described by a molecular approach. We have studied commercial reduced graphene oxide and chemically exfoliated graphite, which are characterized by different EPR spectra. Hyperfine spectroscopies enabled us to characterize the molecular components of the different materials, especially in terms of the interaction of the unpaired electrons with protons (number of protons and hyperfine coupling constants). We also obtained useful precious information about extent of delocalization of the molecular states

    Geometry And Quantum Noise

    Full text link
    We study the fine structure of long-time quantum noise in correlation functions of AdS/CFT systems. Under standard assumptions of quantum chaos for the dynamics and the observables, we estimate the size of exponentially small oscillations and trace them back to geometrical features of the bulk system. The noise level is highly suppressed by the amount of dynamical chaos and the amount of quantum impurity in the states. This implies that, despite their missing on the details of Poincare recurrences, `virtual' thermal AdS phases do control the overall noise amplitude even at high temperatures where the thermal ensemble is dominated by large AdS black holes. We also study EPR correlations and find that, in contrast to the behavior of large correlation peaks, their noise level is the same in TFD states and in more general highly entangled states.Comment: 30 pages. 4 figure

    On the Nature of the Hagedorn Transition in NCOS Systems

    Get PDF
    We extend the study of the nature of the Hagedorn transition in NCOS systems in various dimensions. The canonical analysis results in a microscopic ionization picture of a bound state system in which the Hagedorn transition is postponed till irrelevancy. A microcanonical analysis leads to a limiting Hagedorn behaviour dominated by highly excited, long open strings. The study of the full phase diagram of the NCOS system using the AdS/CFT correspondence suggests that the microscopic ionization picture is the correct one. We discuss some refinements of the ionization mechanism for d>2d>2 NCOS systems, including the formation of a temperature-dependent barrier for the process. Some possible consequences of this behaviour, including a potential puzzle for d=5d=5, are discussed. Phase diagrams of a regularized form of NCOS systems are introduced and do accomodate a phase of long open strings which disappears in the strict NCOS limit.Comment: 37 pages, 3 Postscript figure

    Long time scales and eternal black holes

    Full text link
    We discuss the various scales determining the temporal behaviour of correlation functions in the presence of eternal black holes. We point out the origins of the failure of the semiclassical gravity approximation to respect a unitarity-based bound suggested by Maldacena. We find that the presence of a subleading (in the large-N approximation involved) master field does restore the compliance with one bound but additional configurations are needed to explain the more detailed expected time dependence of the Poincare recurrences and their magnitude.Comment: 10 pages, 6 figures. Presented at Johns Hopkins 2003 and Ahrenshoop 2003 workshop

    Fast Scramblers Of Small Size

    Full text link
    We investigate various geometrical aspects of the notion of `optical depth' in the thermal atmosphere of black hole horizons. Optical depth has been proposed as a measure of fast-crambling times in such black hole systems, and the associated optical metric suggests that classical chaos plays a leading role in the actual scrambling mechanism. We study the behavior of the optical depth with the size of the system and find that AdS/CFT phase transitions with topology change occur naturally as the scrambler becomes smaller than its thermal length. In the context of detailed AdS/CFT models based on D-branes, T-duality implies that small scramblers are described in terms of matrix quantum mechanics.Comment: 14 pages, 3 figures. Added reference

    Noncommutative Field Theory and the Dynamics of Quantum Hall Fluids

    Get PDF
    We study the spectrum of density fluctuations of Fractional Hall Fluids in the context of the noncommutative hidrodynamical model of Susskind. We show that, within the weak-field expansion, the leading correction to the noncommutative Chern--Simons Lagrangian (a Maxwell term in the effective action,) destroys the incompressibility of the Hall fluid due to strong UV/IR effects at one loop. We speculate on possible relations of this instability with the transition to the Wigner crystal, and conclude that calculations within the weak-field expansion must be carried out with an explicit ultraviolet cutoff at the noncommutativity scale. We point out that the noncommutative dipoles exactly match the spatial structure of the Halperin--Kallin quasiexcitons. Therefore, we propose that the noncommutative formalism must describe accurately the spectrum at very large momenta, provided no weak-field approximations are made. We further conjecture that the noncommutative open Wilson lines are `vertex operators' for the quasiexcitons.Comment: 20 pages, harvma

    Conformal Complementarity Maps

    Full text link
    We study quantum cosmological models for certain classes of bang/crunch singularities, using the duality between expanding bubbles in AdS with a FRW interior cosmology and perturbed CFTs on de Sitter space-time. It is pointed out that horizon complementarity in the AdS bulk geometries is realized as a conformal transformation in the dual deformed CFT. The quantum version of this map is described in full detail in a toy model involving conformal quantum mechanics. In this system the complementarity map acts as an exact duality between eternal and apocalyptic Hamiltonian evolutions. We calculate the commutation relation between the Hamiltonians corresponding to the different frames. It vanishes only on scale invariant states.Comment: 38 pages, 9 figure
    • …
    corecore