4,156 research outputs found

    Model of the tail region of the heliospheric interface

    Full text link
    Physical processes in the tail of the solar wind interaction region with the partially ionized local interstellar medium are investigated in a framework of the self-consistent kinetic-gas dynamic model. It is shown that the charge exchange process of the hydrogen atoms with the plasma protons results in suppression of the gas dynamic instabilities and disappearance the contact discontinuity at sufficiently (~3000 AU) large distances from the Sun. The solar wind plasma temperature decreases and, ultimately, the parameters of the plasma and hydrogen atoms approach to the corresponding parameters of the unperturbed interstellar medium at large heliocentric distances.Comment: first version, final version is published in Astronomy Letters vol.29 N.1, pp.58-63, 200

    The bifurcation phenomena in the resistive state of the narrow superconducting channels

    Full text link
    We have investigated the properties of the resistive state of the narrow superconducting channel of the length L/\xi=10.88 on the basis of the time-dependent Ginzburg-Landau model. We have demonstrated that the bifurcation points of the time-dependent Ginzburg-Landau equations cause a number of singularities of the current-voltage characteristic of the channel. We have analytically estimated the averaged voltage and the period of the oscillating solution for the relatively small currents. We have also found the range of currents where the system possesses the chaotic behavior

    Modeling Nonaxisymmetric Bow Shocks: Solution Method and Exact Analytic Solutions

    Get PDF
    A new solution method is presented for steady-state, momentum-conserving, non-axisymmetric bow shocks and colliding winds in the thin-shell limit. This is a generalization of previous formulations to include a density gradient in the pre-shock ambient medium, as well as anisotropy in the pre-shock wind. For cases where the wind is unaccelerated, the formalism yields exact, analytic solutions. Solutions are presented for two bow shock cases: (1) that due to a star moving supersonically with respect to an ambient medium with a density gradient perpendicular to the stellar velocity, and (2) that due to a star with a misaligned, axisymmetric wind moving in a uniform medium. It is also shown under quite general circumstances that the total rate of energy thermalization in the bow shock is independent of the details of the wind asymmetry, including the orientation of the non-axisymmetric driving wind, provided the wind is non-accelerating and point-symmetric. A typical feature of the solutions is that the region near the standoff point is tilted, so that the star does not lie along the bisector of a parabolic fit to the standoff region. The principal use of this work is to infer the origin of bow shock asymmetries, whether due to the wind or ambient medium, or both.Comment: 26 pages and 6 figures accepted to ap

    Hydrogen transport in superionic system Rb3H(SeO4)2: a revised cooperative migration mechanism

    Full text link
    We performed density functional studies of electronic properties and mechanisms of hydrogen transport in Rb3H(SeO4)2 crystal which represents technologically promising class M3H(XO4)2 of proton conductors (M=Rb,Cs, NH4; X=S,Se). The electronic structure calculations show a decisive role of lattice dynamics in the process of proton migration. In the obtained revised mechanism of proton transport, the strong displacements of the vertex oxygens play a key role in the establishing the continuous hydrogen transport and in the achieving low activation energies of proton conduction which is in contrast to the standard two-stage Grotthuss mechanism of proton transport. Consequently, any realistic model description of proton transport should inevitably involve the interactions with the sublattice of the XO4 groups.Comment: 11 pages, 11 figures, to appear in Physical Review

    On the effect of transport coefficient anisotropy on the plasma flow in heliospheric interface

    Get PDF
    The plasma flow in the heliospheric interface is considered. The applicability of hydrodynamic description for this flow is studied. The effect of the magnetic field on the transport properties in the interface plasma is discussed and the dimensionless parameters related to the plasma flow are estimated. It is found that both resistivity and Hall effect can be neglected in Ohm's law, so that the classical induction equation of the ideal magnetohydrodynamic can be used. The Reynolds number is moderately large, so the approximation of inviscid plasma is fairly good. The most important dissipative process is thermal conduction along the magnetic field lines. This effect has to be definitely taken into account. The results obtained in the paper are used to outline the ways for advancing the existing models of the heliospheric interface

    The problem with the non-idealness of the MHD heliosheath

    No full text
    International audienceWhen describing the plasma - field behaviour in the heliospheric interface the difficulty arises that classical MHD concepts are not fully applicable to this complicated multifluid interaction scenario. The classical MHD concept of ideally frozen-in magnetic fields is only strictly valid, if the magnetized medium is fully ionized. As is well known, however, the heliospheric medium represents a partially ionized plasma which contains neutral H-atom flows interacting with the ions via resonant charge exchange processes. Caused by this cross-interaction between the neutral and the ionized media additional non-classical currents are driven which induce additional magnetic fields. These latter fields can be shown to show the tendency to diffuse relative to the ion bulk motion. As we can show this non-classical diffusion is especially pronounced near plasma boundaries or shocks and there act in a way to dissolve the abruptness in the transition structure of the plasma properties. Here we give first estimates of these effects and point to a need to revise the classical MHD theory at its application to partially ionized media

    Effect of the heliospheric interface on the distribution of interstellar hydrogen atom inside the heliosphere

    Full text link
    This paper deals with the modeling of the interstellar hydrogen atoms (H atoms) distribution in the heliosphere. We study influence of the heliospheric interface, that is the region of the interaction between solar wind and local interstellar medium, on the distribution of the hydrogen atoms in vicinity of the Sun. The distribution of H atoms obtained in the frame of the self-consistent kinetic-gasdynamic model of the heliospheric interface is compared with a simplified model which assumes Maxwellian distribution of H atoms at the termination shock and is called often as 'hot' model. This comparison shows that the distribution of H atoms is significantly affected by the heliospheric interface not only at large heliocentric distances, but also in vicinity of the Sun at 1-5 AU. Hence, for analysis of experimental data connected with direct or undirect measurements of the interstellar atoms one necessarily needs to take into account effects of the heliospheric interface. In this paper we propose a new model that is relatively simple but takes into account all major effects of the heliospheric interface. This model can be applied for analysis of backscattered Ly-alpha radiation data obtained on board of different spacecraft.Comment: published in Astronomy Letter

    Critical temperature and Ginzburg-Landau equation for a trapped Fermi gas

    Full text link
    We discuss a superfluid phase transition in a trapped neutral-atom Fermi gas. We consider the case where the critical temperature greatly exceeds the spacing between the trap levels and derive the corresponding Ginzburg-Landau equation. The latter turns out to be analogous to the equation for the condensate wave function in a trapped Bose gas. The analysis of its solution provides us with the value of the critical temperature TcT_{c} and with the spatial and temperature dependence of the order parameter in the vicinity of the phase transition point.Comment: 6 pages, 1 figure, REVTeX. The figure improved. Misprints corrected. More discussion adde
    • …
    corecore