111 research outputs found

    Variable-speed tail rotors for helicopters with variable-speed main rotors

    Get PDF
    Variable tail rotor speed is investigated as a method for reducing tail rotor power, and improving helicopter performance. A helicopter model able to predict the main rotor and tail rotor powers is presented, and the flight test data of the UH-60A helicopter is used for validation. The predictions of the main and tail rotor powers are generally in good agreement with flight tests, which justifies the use of the present method in analyzing main and tail rotors. Reducing the main rotor speed can result in lower main rotor power at certain flight conditions. However, it increases the main rotor torque and the corresponding required tail rotor thrust to trim, which then decreases the yaw control margin of the tail rotor. In hover, the tail rotor may not be able to provide enough thrust to counter the main rotor torque, if it is slowed to follow the main rotor speed. The main rotor speed corresponding to the minimum main rotor power increases, if the change of tail rotor power in hover is considered. As a helicopter translated to cruise, the induced power decreases, and the profile power increases, with the profile power dominating the tail rotor. Reducing the tail rotor speed in cruise reduces the profile power to give a 37% reduction in total tail rotor power and a 1.4% reduction to total helicopter power. In high speed flight, varying the tail rotor speed is ineffective for power reduction. The power reduction obtained by the variable tail rotor speed is reduced for increased helicopter weight

    Parallel Evaluation of Quantum Algorithms for Computational Fluid Dynamics

    Get PDF
    The development and evaluation of quantum computing algorithms for computational fluid dynamics is described along with a detailed analysis of the parallel performance of a quantum computer simulator developed as part of the present work. The quantum computer simulator is used in the evaluation of the quantum algorithms on a conventional parallel computer, and is applied to quantum lattice-based algorithms as well as the Poisson equation. A key result is a demonstration of how the Poisson equation can be solved effeciently on a quantum computer, while its use within a larger algorithm representing a full CFD solver poses a number of signifi- cant challenges

    Numerical Simulations on the PSP Rotor Using HMB3

    Get PDF
    This work presents CFD analyses of the isolated Pressure Sensitive Paint (PSP) model rotor blade in hover and forward flight using the structured multi-block CFD solver of Glasgow University. In hover, two blade-tip Mach numbers (0.585 and 0.65) were simulated for a range of blade pitch angles using fully-turbulent flow and the k-ω SST model. Results at blade-tip Mach number of 0.585 showed a fair agreement with experimental Figure of Merit and surface pressure coefficients obtained in the Rotor Test Cell (RTC) at NASA Langley Research Center. Comparisons are presented at blade-tip Mach number of 0.65 in terms of integral blade loads, surface pressure coefficients and position of the tip-vortex cores with published numerical data. Finally, the flow around the PSP rotor in forward flight was also computed at medium thrust (CT =0.006) and results were compared with published experimental data

    Prediction of Helicopter Rotor Hover Performance using High Fidelity CFD Methods

    Get PDF
    No abstract available

    Control synthesis for an unmanned helicopter with time-delay under uncertain external disturbances

    Get PDF
    This paper presents the controller synthesis for an unmanned helicopter with minimum initial information about the parameters of its mathematical model with time-delays of measured and control signals. The unknown parameters, wind disturbances, and system nonlinearity are considered as external disturbances that are estimated using a multi-gap observer. The estimates obtained are used in the control law to improve the stability rate for flight regimes

    Wind-turbine wake encounter by light aircraft

    Get PDF
    No abstract available

    Coupled flight dynamics and CFD - demonstration for helicopters in shipborne environment

    Get PDF
    The development of high-performance computing and computational fluid dynamics methods have evolved to the point where it is possible to simulate complete helicopter configurations with good accuracy. Computational fluid dynamics methods have also been applied to problems such as rotor/fuselage and main/tail rotor interactions, performance studies in hover and forward flight, rotor design, and so on. The GOAHEAD project is a good example of a coordinated effort to validate computational fluid dynamics for complex helicopter configurations. Nevertheless, current efforts are limited to steady flight and focus mainly on expanding the edges of the flight envelope. The present work tackles the problem of simulating manoeuvring flight in a computational fluid dynamics environment by integrating a moving grid method and the helicopter flight mechanics solver with computational fluid dynamics. After a discussion of previous works carried out on the subject and a description of the methods used, validation of the computational fluid dynamics for ship airwake flow and rotorcraft flight at low advance ratio are presented. Finally, the results obtained for manoeuvring flight cases are presented and discussed

    Study of hybrid air vehicles stability using computational fluid dynamics

    Get PDF
    This paper uses Computational Fluid Dynamics to predict aerodynamic damping of airships or hybrid air vehicles. This class of aircraft is characterised by large lifting bodies combining buoyancy and circulatory lift. Damping is investigated via forced oscillations of the vehicle in pitch and yaw. The employed method is verified using data for lighter than air vehicles. The use of fins and stabilisers was found to be beneficial. The rear part of the body was dominated by separated flow that containedmore frequencies than the forcing frequency imposed on the body. The final design is seen to be dynamically stable across a range of conditions for small pitch angles

    Multi-Disciplinary Simulations of Stores in Weapon Bays using Scale Adaptive Simulation

    Get PDF
    This paper presents a set of cavity flow calculations involving door opening, store release and aeroelasticity. Aeroelastic effects were present, but secondary for the case at hand. For established bay flows, the structural excitation showed a directional dependence, and the structures were responding to the flow frequency content. Maximum store deformations were of about 2% of the store diameter. This is the first time where such effects are quantified for store releases from within bays. The store deformation while interacting with the shear layer, and the store trajectory variability are also quantified

    Aeroelastic simulations of stores in weapon bays using Detached-Eddy simulation

    Get PDF
    Detached-Eddy Simulations of flows in weapon bays with a generic store at different positions in the cavity and with flexible fins are presented in this paper. Simulations were carried out to better understand the fluid–structure interactions of the unsteady, turbulent flow and the store. Mach and Reynolds numbers (based on the missile diameter) were 0.85 and 326.000 respectively. Spectral analysis showed few differences in the frequency content in the cavity between the store with rigid and flexible fins. However, a large effect of the store position was seen. When the store was placed inside the cavity, the noise reduction reached 7 dB close to the cavity ceiling. The closer the store to the carriage position, the more coherent and quieter was the cavity. To perform a more realistic simulation, a gap of 0.3% of the store diameter was introduced between the fin root and the body of the store. Store loads showed little differences between the rigid and flexible fins when the store was inside and outside the cavity. With the store at the shear layer, the flexible fins were seen to have a reduction in loads with large fluctuations in position about a mean. Fin-tip displacements of the store inside the cavity were of the range of 0.2% of the store diameter, and in the range of 1–2% of store diameter when at the shear layer
    • …
    corecore