25,787 research outputs found

    The (2+1)-d U(1) Quantum Link Model Masquerading as Deconfined Criticality

    Get PDF
    The (2+1)(2+1)-d U(1) quantum link model is a gauge theory, amenable to quantum simulation, with a spontaneously broken SO(2) symmetry emerging at a quantum phase transition. Its low-energy physics is described by a (2+1)(2+1)-d \RP(1) effective field theory, perturbed by a dangerously irrelevant SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. At the quantum phase transition, the model mimics some features of deconfined quantum criticality, but remains linearly confining. Deconfinement only sets in at high temperature.Comment: 4.5 pages, 6 figure

    Crystalline Confinement

    Full text link
    We show that exotic phases arise in generalized lattice gauge theories known as quantum link models in which classical gauge fields are replaced by quantum operators. While these quantum models with discrete variables have a finite-dimensional Hilbert space per link, the continuous gauge symmetry is still exact. An efficient cluster algorithm is used to study these exotic phases. The (2+1)(2+1)-d system is confining at zero temperature with a spontaneously broken translation symmetry. A crystalline phase exhibits confinement via multi-stranded strings between charge-anti-charge pairs. A phase transition between two distinct confined phases is weakly first order and has an emergent spontaneously broken approximate SO(2)SO(2) global symmetry. The low-energy physics is described by a (2+1)(2+1)-d RP(1)\mathbb{R}P(1) effective field theory, perturbed by a dangerously irrelevant SO(2)SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. This model is an ideal candidate to be implemented in quantum simulators to study phenomena that are not accessible using Monte Carlo simulations such as the real-time evolution of the confining string and the real-time dynamics of the pseudo-Goldstone boson.Comment: Proceedings of the 31st International Symposium on Lattice Field Theory - LATTICE 201

    Electric field control of spin lifetimes in Nb-SrTiO3_3 by spin-orbit fields

    Get PDF
    We show electric field control of the spin accumulation at the interface of the oxide semiconductor Nb-SrTiO3_{3} with Co/AlOx_{x} spin injection contacts at room temperature. The in-plane spin lifetime τ∥\tau_\parallel as well as the ratio of the out-of-plane to in-plane spin lifetime τ⊥/τ∥\tau_\perp/\tau_\parallel is manipulated by the built-in electric field at the semiconductor surface, without any additional gate contact. The origin of this manipulation is attributed to Rashba Spin-Orbit Fields (SOFs) at the Nb-SrTiO3_3 surface and shown to be consistent with theoretical model calculations based on SOF spin flip scattering. Additionally, the junction can be set in a high or low resistance state, leading to a non-volatile control of τ⊥/τ∥\tau_\perp/\tau_\parallel, consistent with the manipulation of the Rashba SOF strength. Such room temperature electric field control over the spin state is essential for developing energy-efficient spintronic devices and shows promise for complex oxide based (spin)electronicsComment: 5 pages, 4 figure

    Qubit rotation and Berry Phase

    Full text link
    A quantized fermion can be represented by a scalar particle encircling a magnetic flux line. It has the spinor structure which can be constructed from quantum gates and qubits. We have studied here the role of Berry phase in removing dynamical phase during one qubit rotation of a quantized fermion. The entanglement of two qubit inserting spin-echo to one of them results the change of Berry phase that can be considered as a measure of entanglement. Some effort is given to study the effect of noise on the Berry phase of spinor and their entangled states.Comment: 12 page

    Dual Projection and Selfduality in Three Dimensions

    Get PDF
    We discuss the notion of duality and selfduality in the context of the dual projection operation that creates an internal space of potentials. Contrary to the prevailing algebraic or group theoretical methods, this technique is applicable to both even and odd dimensions. The role of parity in the kernel of the Gauss law to determine the dimensional dependence is clarified. We derive the appropriate invariant actions, discuss the symmetry groups and their proper generators. In particular, the novel concept of duality symmetry and selfduality in Maxwell theory in (2+1) dimensions is analysed in details. The corresponding action is a 3D version of the familiar duality symmetric electromagnetic theory in 4D. Finally, the duality symmetric actions in the different dimensions constructed here manifest both the SO(2) and Z2Z_2 symmetries, contrary to conventional results.Comment: 20 pages, late

    Finite-Volume Energy Spectrum, Fractionalized Strings, and Low-Energy Effective Field Theory for the Quantum Dimer Model on the Square Lattice

    Get PDF
    We present detailed analytic calculations of finite-volume energy spectra, mean field theory, as well as a systematic low-energy effective field theory for the square lattice quantum dimer model. The analytic considerations explain why a string connecting two external static charges in the confining columnar phase fractionalizes into eight distinct strands with electric flux 14\frac{1}{4}. An emergent approximate spontaneously broken SO(2)SO(2) symmetry gives rise to a pseudo-Goldstone boson. Remarkably, this soft phonon-like excitation, which is massless at the Rokhsar-Kivelson (RK) point, exists far beyond this point. The Goldstone physics is captured by a systematic low-energy effective field theory. We determine its low-energy parameters by matching the analytic effective field theory with exact diagonalization results and Monte Carlo data. This confirms that the model exists in the columnar (and not in a plaquette or mixed) phase all the way to the RK point.Comment: 35 pages, 16 figure

    From the SU(2)SU(2) Quantum Link Model on the Honeycomb Lattice to the Quantum Dimer Model on the Kagom\'e Lattice: Phase Transition and Fractionalized Flux Strings

    Full text link
    We consider the (2+1)(2+1)-d SU(2)SU(2) quantum link model on the honeycomb lattice and show that it is equivalent to a quantum dimer model on the Kagom\'e lattice. The model has crystalline confined phases with spontaneously broken translation invariance associated with pinwheel order, which is investigated with either a Metropolis or an efficient cluster algorithm. External half-integer non-Abelian charges (which transform non-trivially under the Z(2)\mathbb{Z}(2) center of the SU(2)SU(2) gauge group) are confined to each other by fractionalized strings with a delocalized Z(2)\mathbb{Z}(2) flux. The strands of the fractionalized flux strings are domain walls that separate distinct pinwheel phases. A second-order phase transition in the 3-d Ising universality class separates two confining phases; one with correlated pinwheel orientations, and the other with uncorrelated pinwheel orientations.Comment: 16 pages, 20 figures, 2 tables, two more relevant references and one short paragraph are adde

    From the SU(2)SU(2) Quantum Link Model on the Honeycomb Lattice to the Quantum Dimer Model on the Kagom\'e Lattice: Phase Transition and Fractionalized Flux Strings

    Full text link
    We consider the (2+1)(2+1)-d SU(2)SU(2) quantum link model on the honeycomb lattice and show that it is equivalent to a quantum dimer model on the Kagom\'e lattice. The model has crystalline confined phases with spontaneously broken translation invariance associated with pinwheel order, which is investigated with either a Metropolis or an efficient cluster algorithm. External half-integer non-Abelian charges (which transform non-trivially under the Z(2)\mathbb{Z}(2) center of the SU(2)SU(2) gauge group) are confined to each other by fractionalized strings with a delocalized Z(2)\mathbb{Z}(2) flux. The strands of the fractionalized flux strings are domain walls that separate distinct pinwheel phases. A second-order phase transition in the 3-d Ising universality class separates two confining phases; one with correlated pinwheel orientations, and the other with uncorrelated pinwheel orientations.Comment: 16 pages, 20 figures, 2 tables, two more relevant references and one short paragraph are adde
    • …
    corecore