5 research outputs found
Counting nodal domains on surfaces of revolution
We consider eigenfunctions of the Laplace-Beltrami operator on special
surfaces of revolution. For this separable system, the nodal domains of the
(real) eigenfunctions form a checker-board pattern, and their number is
proportional to the product of the angular and the "surface" quantum numbers.
Arranging the wave functions by increasing values of the Laplace-Beltrami
spectrum, we obtain the nodal sequence, whose statistical properties we study.
In particular we investigate the distribution of the normalized counts
for sequences of eigenfunctions with where . We show that the distribution approaches
a limit as (the classical limit), and study the leading
corrections in the semi-classical limit. With this information, we derive the
central result of this work: the nodal sequence of a mirror-symmetric surface
is sufficient to uniquely determine its shape (modulo scaling).Comment: 36 pages, 8 figure
Stability of nodal structures in graph eigenfunctions and its relation to the nodal domain count
The nodal domains of eigenvectors of the discrete Schrodinger operator on
simple, finite and connected graphs are considered. Courant's well known nodal
domain theorem applies in the present case, and sets an upper bound to the
number of nodal domains of eigenvectors: Arranging the spectrum as a non
decreasing sequence, and denoting by the number of nodal domains of the
'th eigenvector, Courant's theorem guarantees that the nodal deficiency
is non negative. (The above applies for generic eigenvectors. Special
care should be exercised for eigenvectors with vanishing components.) The main
result of the present work is that the nodal deficiency for generic
eigenvectors equals to a Morse index of an energy functional whose value at its
relevant critical points coincides with the eigenvalue. The association of the
nodal deficiency to the stability of an energy functional at its critical
points was recently discussed in the context of quantum graphs
[arXiv:1103.1423] and Dirichlet Laplacian in bounded domains in
[arXiv:1107.3489]. The present work adapts this result to the discrete case.
The definition of the energy functional in the discrete case requires a special
setting, substantially different from the one used in
[arXiv:1103.1423,arXiv:1107.3489] and it is presented here in detail.Comment: 15 pages, 1 figur