219 research outputs found

    Statistics of Core Lifetimes in Numerical Simulations of Turbulent, Magnetically Supercritical Molecular Clouds

    Full text link
    We present measurements of the mean dense core lifetimes in numerical simulations of magnetically supercritical, turbulent, isothermal molecular clouds, in order to compare with observational determinations. "Prestellar" lifetimes (given as a function of the mean density within the cores, which in turn is determined by the density threshold n_thr used to define them) are consistent with observationally reported values, ranging from a few to several free-fall times. We also present estimates of the fraction of cores in the "prestellar", "stellar'', and "failed" (those cores that redisperse back into the environment) stages as a function of n_thr. The number ratios are measured indirectly in the simulations due to their resolution limitations. Our approach contains one free parameter, the lifetime of a protostellar object t_yso (Class 0 + Class I stages), which is outside the realm of the simulations. Assuming a value t_yso = 0.46 Myr, we obtain number ratios of starless to stellar cores ranging from 4-5 at n_thr = 1.5 x 10^4 cm^-3 to 1 at n_thr = 1.2 x 10^5 cm^-3, again in good agreement with observational determinations. We also find that the mass in the failed cores is comparable to that in stellar cores at n_thr = 1.5 x 10^4 cm^-3, but becomes negligible at n_thr = 1.2 x 10^5 cm^-3, in agreement with recent observational suggestions that at the latter densities the cores are in general gravitationally dominated. We conclude by noting that the timescale for core contraction and collapse is virtually the same in the subcritical, ambipolar diffusion-mediated model of star formation, in the model of star formation in turbulent supercritical clouds, and in a model intermediate between the previous two, for currently accepted values of the clouds' magnetic criticality.Comment: 25 pages, 8 figures, ApJ accepted. Fig.1 animation is at http://www.astrosmo.unam.mx/~e.vazquez/turbulence/movies/Galvan_etal07/Galvan_etal07.htm

    Larson's third law and the universality of molecular cloud structure

    Full text link
    Larson (1981) first noted a scaling relation between masses and sizes in molecular clouds that implies that these objects have approximately constant column densities. This original claim, based upon millimeter observations of carbon monoxide lines, has been challenged by many theorists, arguing that the apparent constant column density observed is merely the result of the limited dynamic range of observations, and that in reality clouds have column density variations over two orders of magnitudes. In this letter we investigate a set of nearby molecular clouds with near-infrared excess methods, which guarantee very large dynamic ranges and robust column density measurements, to test the validity of Larson's third law. We verify that different clouds have almost identical average column densities above a given extinction threshold; this holds regardless of the extinction threshold, but the actual average surface mass density is a function of the specific threshold used. We show that a second version of Larson's third law, involving the mass-radius relation for single clouds and cores, does not hold in our sample, indicating that individual clouds are not objects that can be described by constant column density. Our results instead indicate that molecular clouds are characterized by a universal structure. Finally we point out that this universal structure can be linked to the log-normal nature of cloud column density distributions.Comment: 5 pages, 4 figures, A&A in press (letter

    Formation and Collapse of Quiescent Cloud Cores Induced by Dynamic Compressions

    Full text link
    (Abridged) We present numerical hydrodynamical simulations of the formation, evolution and gravitational collapse of isothermal molecular cloud cores. A compressive wave is set up in a constant sub-Jeans density distribution of radius r = 1 pc. As the wave travels through the simulation grid, a shock-bounded spherical shell is formed. The inner shock of this shell reaches and bounces off the center, leaving behind a central core with an initially almost uniform density distribution, surrounded by an envelope consisting of the material in the shock-bounded shell, with a power-law density profile that at late times approaches a logarithmic slope of -2 even in non-collapsing cases. The resulting density structure resembles a quiescent core of radius < 0.1 pc, with a Bonnor-Ebert-like (BE-like) profile, although it has significant dynamical differences: it is initially non-self-gravitating and confined by the ram pressure of the infalling material, and consequently, growing continuously in mass and size. With the appropriate parameters, the core mass eventually reaches an effective Jeans mass, at which time the core begins to collapse. Thus, there is necessarily a time delay between the appearance of the core and the onset of its collapse, but this is not due to the dissipation of its internal turbulence as it is often believed. These results suggest that pre-stellar cores may approximate Bonnor-Ebert structures which are however of variable mass and may or may not experience gravitational collapse, in qualitative agreement with the large observed frequency of cores with BE-like profiles.Comment: Accepted for publication in ApJ. Associated mpeg files can be found in http://www.astrosmo.unam.mx/~g.gomez/publica.htm

    Physical vs. Observational Properties of Clouds in Turbulent Molecular Cloud Models

    Get PDF
    We examine how well the physical properties of clumps in turbulent molecular clouds can be determined by measurements of observed clump structures. We compare simulated observations of three-dimensional numerical models of isothermal, magnetized, supersonic turbulence to the actual physical structure of the models. We determine how changing the parameters of turbulence changes the structure of the simulations. Stronger driving produces greater density fluctuations, and longer wavelength driving produces larger structures. Magnetic fields have a less pronounced effect on structure, and one that is not monotonic with field strength. Aligned structures are seen only with low-density tracers, and when the intensity of the field is large. Comparing different regions with the same tracers (or the same region with different tracers) can give information about physical conditions: different density tracers can help determine the size of the density fluctuations and thus the strength of the driving. Nevertheless, velocity superposition of multiple physical clumps can fully obscure the physical properties of those clumps, and short wavelength driving worsens this effect. Regarding Larson's relationships, we confirm previous claims that the mean density-size relationship is an artifact of the observations; and the velocity dispersion-size relationship, is consistent with observations. Regarding the mass spectra, we show that, when we look for clumps with high enough resolution, they converge to a log-normal function, rather than the power-law obtained in the literature.Comment: ApJ accepted. 14 gif figures. PS file available at ftp://ftp.astrosmo.unam.mx/pub/j.ballesteros/Papers

    On the Effects of Projection on Morphology

    Full text link
    We study the effects of projection of three-dimensional (3D) data onto the plane of the sky by means of numerical simulations of turbulence in the interstellar medium including the magnetic field, parameterized cooling and diffuse and stellar heating, self-gravity and rotation. We compare the physical-space density and velocity distributions with their representation in position-position-velocity (PPV) space (``channel maps''), noting that the latter can be interpreted in two ways: either as maps of the column density's spatial distribution (at a given line-of-sight (LOS) velocity), or as maps of the spatial distribution of a given value of the LOS velocity (weighted by density). This ambivalence appears related to the fact that the spatial and PPV representations of the data give significantly different views. First, the morphology in the channel maps more closely resembles that of the spatial distribution of the LOS velocity component than that of the density field, as measured by pixel-to-pixel correlations between images. Second, the channel maps contain more small-scale structure than 3D slices of the density and velocity fields, a fact evident both in subjective appearance and in the power spectra of the images. This effect may be due to a pseudo-random sampling (along the LOS) of the gas contributing to the structure in a channel map: the positions sampled along the LOS (chosen by their LOS velocity) may vary significantly from one position in the channel map to the next.Comment: 6 figures. To appear in the March 20th volume in Ap

    Cooling, Gravity and Geometry: Flow-driven Massive Core Formation

    Get PDF
    We study numerically the formation of molecular clouds in large-scale colliding flows including self-gravity. The models emphasize the competition between the effects of gravity on global and local scales in an isolated cloud. Global gravity builds up large-scale filaments, while local gravity -- triggered by a combination of strong thermal and dynamical instabilities -- causes cores to form. The dynamical instabilities give rise to a local focusing of the colliding flows, facilitating the rapid formation of massive protostellar cores of a few 100 M⊙_\odot. The forming clouds do not reach an equilibrium state, though the motions within the clouds appear comparable to ``virial''. The self-similar core mass distributions derived from models with and without self-gravity indicate that the core mass distribution is set very early on during the cloud formation process, predominantly by a combination of thermal and dynamical instabilities rather than by self-gravity.Comment: 13 pages, 12 figures, accepted by Ap

    Unveiling two expanding stellar groups formed through violent relaxation in The Lagoon Nebula Cluster

    Full text link
    The current kinematic state of young stellar clusters can give clues on their actual dynamical state and origin. In this contribution, we use Gaia DR3 data of the Lagoon Nebula Cluster (LNC) to show that the cluster is composed of two expanding groups, likely formed from different molecular cloud clumps. We find no evidence of massive stars having larger velocity dispersion than low-mass stars or being spatially segregated across the LNC, as a whole, or within the Primary group. However, the Secondary group, with 1/5th of the stars, exhibits intriguing features. On the one hand, it shows a bipolar nature, with an aspect ratio of ∌\sim3:1. In addition, the massive stars in this group exhibit larger velocity dispersion than the low-mass stars, although they are not concentrated towards the center of the group. This suggests that this group may have undergone dynamical relaxation, first, and some explosive event afterward. However, further observations and numerical work have to be performed to confirm this hypothesis. The results of this work suggest that, although stellar clusters may form by the global and hierarchical collapse of their parent clump, still some dynamical relaxation may take place.Comment: Accepted for publication in MNRA
    • 

    corecore