84 research outputs found
Signatures of Electron Fractionalization in Ultraquantum Bismuth
Because of the long Fermi wavelength of itinerant electrons, the quantum
limit of elemental bismuth (unlike most metals) can be attained with a moderate
magnetic field. The quantized orbits of electrons shrink with increasing
magnetic field. Beyond the quantum limit, the circumference of these orbits
becomes shorter than the Fermi wavelength. We studied transport coefficients of
a single crystal of bismuth up to 33 tesla, which is deep in this ultraquantum
limit. The Nernst coefficient presents three unexpected maxima that are
concomitant with quasi-plateaus in the Hall coefficient. The results suggest
that this bulk element may host an exotic quantum fluid reminiscent of the one
associated with the fractional quantum Hall effect and raise the issue of
electron fractionalization in a three-dimensional metal.Comment: 9 pages, four figures and supposrting online materia
High Field de Haas - van Alphen Studies of the Fermi Surfaces of LaMIn (M = Co, Rh, Ir)
We report measurements of the de Haas - van Alphen effect on a series of
compounds, LaMIn (M = Co, Rh, Ir). The results show that each of the Co
and Ir Fermi surfaces (FSs) exhibit some portions that are two dimensional and
some portions that are three dimensional. The most two dimensional character is
exhibited in LaCoIn, less two dimensional behavior is seen in
LaIrIn, no part of Fermi surface of LaRhIn is found to have a two
dimensional character. Thus the two dimensionality of portions of the FSs is
largely determined by the d character of the energy bands while all of the
effective masses remain 1.2. This fact has implications for the causes
of the heavy fermion nature of superconductivity and magnetism in the Ce-based
compounds having the similar composition and structure. All of the measurements
were performed at the National High Magnetic Field Laboratory using either
cantilever magnetometry or field modulation methods.Comment: 10 pages, 4 figure
Field induced density wave in the heavy fermion compound CeRhIn5
Metals containing Ce often show strong electron correlations due to the
proximity of the 4f state to the Fermi energy, leading to strong coupling with
the conduction electrons. This coupling typically induces a variety of
competing ground states, including heavy-fermion metals, magnetism and
unconventional superconductivity. The d-wave superconductivity in CeTMIn5
(TM=Co, Rh, Ir) has attracted significant interest due to its qualitative
similarity to the cuprate high-Tc superconductors. Here, we show evidence for a
field induced phase-transition to a state akin to a density-wave (DW) in the
heavy fermion CeRhIn5, existing in proximity to its unconventional
superconductivity. The DW state is signaled by a hysteretic anomaly in the
in-plane resistivity accompanied by the appearance of non-linear electrical
transport at high magnetic fields (>27T), which are the distinctive
characteristics of density-wave states. The unusually large hysteresis enables
us to directly investigate the Fermi surface of a supercooled electronic system
and to clearly associate a Fermi surface reconstruction with the transition.
Key to our observation is the fabrication of single crystal microstructures,
which are found to be highly sensitive to "subtle" phase transitions involving
only small portions of the Fermi surface. Such subtle order might be a common
feature among correlated electron systems, and its clear observation adds a new
perspective on the similarly subtle CDW state in the cuprates.Comment: Accepted in Nature Communication
Hall plateaus at magic angles in bismuth beyond the quantum limit
We present a study of the angular dependence of the resistivity tensor up to
35 T in elemental bismuth complemented by torque magnetometry measurements in a
similar configuration. For at least two particular field orientations a few
degrees off the trigonal axis, the Hall resistivity was found to become
field-independent within experimental resolution in a finite field window
corresponding to a field which is roughly three times the frequency of quantum
oscillations. The Hall plateaus rapidly vanish as the field is tilted off
theses magic angles. We identify two distinct particularities of these specific
orientations, which may play a role in the emergence of the Hall plateaus.Comment: 5 pages, 5 figure
- …