92 research outputs found

    Amplifying the Hawking signal in BECs

    Get PDF
    We consider simple models of Bose-Einstein condensates to study analog pair-creation effects, namely the Hawking effect from acoustic black holes and the dynamical Casimir effect in rapidly time-dependent backgrounds. We also focus on a proposal by Cornell to amplify the Hawking signal in density-density correlators by reducing the atoms' interactions shortly before measurements are made.Comment: 10 pages, 3 figures; to appear in Advances in High Energy Physics, special Issue 'Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects

    Hawking effect in BECs acoustic white holes

    Get PDF
    Bogoliubov pseudoparticle creation in a BEC undergoing a WH like flow is investigated analytically in the case of a one dimensional geometry with stepwise homogeneous regions. Comparison of the results with those corresponding to a BH flow is performed. The implications for the analogous gravitational problem is discussed.Comment: 29 pages, 32 figure

    The depletion in Bose Einstein condensates using Quantum Field Theory in curved space

    Get PDF
    Using methods developed in Quantum Field Theory in curved space we can estimate the effects of the inhomogeneities and of a non vanishing velocity on the depletion of a Bose Einstein condensate within the hydrodynamical approximation.Comment: 4 pages, no figure. Discussion extended and references adde

    Low frequency gray-body factors and infrared divergences: rigorous results

    Full text link
    Formal solutions to the mode equations for both spherically symmetric black holes and Bose-Einstein condensate acoustic black holes are obtained by writing the spatial part of the mode equation as a linear Volterra integral equation of the second kind. The solutions work for a massless minimally coupled scalar field in the s-wave or zero angular momentum sector for a spherically symmetric black hole and in the longitudinal sector of a 1D Bose-Einstein condensate acoustic black hole. These solutions are used to obtain in a rigorous way analytic expressions for the scattering coefficients and gray-body factors in the zero frequency limit. They are also used to study the infrared behaviors of the symmetric two-point function and two functions derived from it: the point-split stress-energy tensor for the massless minimally coupled scalar field in Schwarzschild-de Sitter spacetime and the density-density correlation function for a Bose-Einstein condensate acoustic black hole.Comment: 41 pages, 5 figure

    Scattering coefficients and gray-body factor for 1D BEC acoustic black holes: exact results

    Full text link
    A complete set of exact analytic solutions to the mode equation is found in the region exterior to the acoustic horizon for a class of 1D Bose-Einstein condensate (BEC) acoustic black holes. From these, analytic expressions for the scattering coefficients and gray-body factor are obtained. The results are used to verify previous predictions regarding the behaviors of the scattering coefficients and gray-body factor in the low frequency limit.Comment: 13 pages, 1 figure, Final version, to appear in Phys. Rev.

    Numerical analysis of backreaction in acoustic black holes

    Full text link
    Using methods of Quantum Field Theory in curved spacetime, the first order in hbar quantum corrections to the motion of a fluid in an acoustic black hole configuration are numerically computed. These corrections arise from the non linear backreaction of the emitted phonons. Time dependent (isolated system) and equilibrium configurations (hole in a sonic cavity) are both analyzed.Comment: 7 pages, 5 figure

    Classical and Quantum Shell Dynamics, and Vacuum Decay

    Get PDF
    Following a minisuperspace approach to the dynamics of a spherically symmetric shell, a reduced Lagrangian for the radial degree of freedom is derived directly from the Einstein-Hilbert action. The key feature of this new Lagrangian is its invariance under time reparametrization. Indeed, all classical and quantum dynamics is encoded in the Hamiltonian constraint that follows from that invariance. Thus, at the classical level, we show that the Hamiltonian constraint reproduces, in a simple gauge, Israel's matching condition which governs the evolution of the shell. In the quantum case, the vanishing of the Hamiltonian (in a weak sense), is interpreted as the Wheeler-DeWitt equation for the physical states, in analogy to the corresponding case in quantum cosmology. Using this equation, quantum tunneling through the classical barrier is then investigated in the WKB approximation, and the connection to vacuum decay is elucidated.Comment: 36 pages, ReVTeX, 10 Figs. in postscript format, in print on Class.& Quant.Gra

    Gray-body factor and infrared divergences in 1D BEC acoustic black holes

    Full text link
    It is shown that the gray-body factor for a one-dimensional elongated Bose-Einstein condensate (BEC) acoustic black hole with one horizon does not vanish in the low-frequency (ω→0\omega\to 0) limit. This implies that the analog Hawking radiation is dominated by the emission of an infinite number (1ω\frac{1}{\omega}) of soft phonons in contrast with the case of a Schwarzschild black hole where the gray-body factor vanishes as ω→0\omega\to 0 and the spectrum is not dominated by low-energy particles. The infrared behaviors of certain correlation functions are also discussed.Comment: 6 pages, 2 figures. Final version. A double misprint in Eq. (21) of the published version has been corrected her

    Backreaction in Acoustic Black Holes

    Full text link
    The backreaction equations for the linearized quantum fluctuations in an acoustic black hole are given. The solution near the horizon, obtained within a dimensional reduction, indicates that acoustic black holes, unlike Schwarzschild ones, get cooler as they radiate phonons. They show remarkable analogies with near-extremal Reissner-Nordstrom black holes.Comment: 4 pages, revtex, 1 figure. revised version, published in pr

    Fourth derivative gravity in the auxiliary fields representation and application to the black hole stability

    Full text link
    We consider an auxiliary fields formulation for the general fourth-order gravity on an arbitrary curved background. The case of a Ricci-flat background is elaborated in full details and it is shown that there is an equivalence with the standard metric formulation. At the same time, using auxiliary fields helps to make perturbations to look simpler and the results more clear. As an application we reconsider the linear perturbations for the classical Schwarzschild solution. We also briefly discuss the relation to the effect of massive unphysical ghosts in the theory.Comment: 11 pages, no figure
    • …
    corecore