109 research outputs found

    F?D: On understanding the role of deep feature spaces on face generation evaluation

    Full text link
    Perceptual metrics, like the Fr\'echet Inception Distance (FID), are widely used to assess the similarity between synthetically generated and ground truth (real) images. The key idea behind these metrics is to compute errors in a deep feature space that captures perceptually and semantically rich image features. Despite their popularity, the effect that different deep features and their design choices have on a perceptual metric has not been well studied. In this work, we perform a causal analysis linking differences in semantic attributes and distortions between face image distributions to Fr\'echet distances (FD) using several popular deep feature spaces. A key component of our analysis is the creation of synthetic counterfactual faces using deep face generators. Our experiments show that the FD is heavily influenced by its feature space's training dataset and objective function. For example, FD using features extracted from ImageNet-trained models heavily emphasize hats over regions like the eyes and mouth. Moreover, FD using features from a face gender classifier emphasize hair length more than distances in an identity (recognition) feature space. Finally, we evaluate several popular face generation models across feature spaces and find that StyleGAN2 consistently ranks higher than other face generators, except with respect to identity (recognition) features. This suggests the need for considering multiple feature spaces when evaluating generative models and using feature spaces that are tuned to nuances of the domain of interest.Comment: Code and dataset to be released soo

    Correlators of Mixed Symmetry Operators in Defect CFTs

    Full text link
    We use the embedding formalism to study correlation functions of a d-dimensional Euclidean CFT in the presence of a qq co-dimensional defect. The defect breaks the global conformal group SO(d+1,1)SO(d+1,1) into SO(d−q+1,1)×SO(q)SO(d-q+1,1) \times SO(q). We calculate all possible invariant structures that can appear in one-point, two-point and three-point correlation functions of bulk and defect operators in mixed symmetry representation. Their generalization to n-point correlation functions are also worked out. Correlation functions in the presence of a defect, in arbitrary representation of SO(q)SO(q), are also calculated.Comment: 39 pages, 3 figures v2: published version. Corrected typos and results from section 4.3 of v

    An Unsupervised Learning Model for Deformable Medical Image Registration

    Full text link
    We present a fast learning-based algorithm for deformable, pairwise 3D medical image registration. Current registration methods optimize an objective function independently for each pair of images, which can be time-consuming for large data. We define registration as a parametric function, and optimize its parameters given a set of images from a collection of interest. Given a new pair of scans, we can quickly compute a registration field by directly evaluating the function using the learned parameters. We model this function using a convolutional neural network (CNN), and use a spatial transform layer to reconstruct one image from another while imposing smoothness constraints on the registration field. The proposed method does not require supervised information such as ground truth registration fields or anatomical landmarks. We demonstrate registration accuracy comparable to state-of-the-art 3D image registration, while operating orders of magnitude faster in practice. Our method promises to significantly speed up medical image analysis and processing pipelines, while facilitating novel directions in learning-based registration and its applications. Our code is available at https://github.com/balakg/voxelmorph .Comment: 9 pages, in CVPR 201

    Visualizing chest X-ray dataset biases using GANs

    Full text link
    Recent work demonstrates that images from various chest X-ray datasets contain visual features that are strongly correlated with protected demographic attributes like race and gender. This finding raises issues of fairness, since some of these factors may be used by downstream algorithms for clinical predictions. In this work, we propose a framework, using generative adversarial networks (GANs), to visualize what features are most different between X-rays belonging to two demographic subgroups.Comment: Medical Imaging with Deep Learning(MIDL) 202

    ElasticDiffusion: Training-free Arbitrary Size Image Generation through Global-Local Content Separation

    Full text link
    Diffusion models have revolutionized image generation in recent years, yet they are still limited to a few sizes and aspect ratios. We propose ElasticDiffusion, a novel training-free decoding method that enables pretrained text-to-image diffusion models to generate images with various sizes. ElasticDiffusion attempts to decouple the generation trajectory of a pretrained model into local and global signals. The local signal controls low-level pixel information and can be estimated on local patches, while the global signal is used to maintain overall structural consistency and is estimated with a reference image. We test our method on CelebA-HQ (faces) and LAION-COCO (objects/indoor/outdoor scenes). Our experiments and qualitative results show superior image coherence quality across aspect ratios compared to MultiDiffusion and the standard decoding strategy of Stable Diffusion. Project page: https://elasticdiffusion.github.io/Comment: Accepted at CVPR 2024. Project Page: https://elasticdiffusion.github.io

    GELDA: A generative language annotation framework to reveal visual biases in datasets

    Full text link
    Bias analysis is a crucial step in the process of creating fair datasets for training and evaluating computer vision models. The bottleneck in dataset analysis is annotation, which typically requires: (1) specifying a list of attributes relevant to the dataset domain, and (2) classifying each image-attribute pair. While the second step has made rapid progress in automation, the first has remained human-centered, requiring an experimenter to compile lists of in-domain attributes. However, an experimenter may have limited foresight leading to annotation "blind spots," which in turn can lead to flawed downstream dataset analyses. To combat this, we propose GELDA, a nearly automatic framework that leverages large generative language models (LLMs) to propose and label various attributes for a domain. GELDA takes a user-defined domain caption (e.g., "a photo of a bird," "a photo of a living room") and uses an LLM to hierarchically generate attributes. In addition, GELDA uses the LLM to decide which of a set of vision-language models (VLMs) to use to classify each attribute in images. Results on real datasets show that GELDA can generate accurate and diverse visual attribute suggestions, and uncover biases such as confounding between class labels and background features. Results on synthetic datasets demonstrate that GELDA can be used to evaluate the biases of text-to-image diffusion models and generative adversarial networks. Overall, we show that while GELDA is not accurate enough to replace human annotators, it can serve as a complementary tool to help humans analyze datasets in a cheap, low-effort, and flexible manner.Comment: 21 pages, 15 figures, 9 table
    • …
    corecore