150 research outputs found
Decadal variations and trends of the global ocean carbon sink
We investigate the variations of the ocean CO2 sink during the past three decades using global surface ocean maps of the partial pressure of CO2 reconstructed from observations contained in the Surface Ocean CO2 Atlas Version 2. To create these maps, we used the neural network-based data-interpolation method of [LandschĂŒtzer2014], but extended the work in time from 1998 through 2011 to the period from 1982 through 2011. Our results suggest strong decadal variations in the global ocean carbon sink around a long-term increase that corresponds roughly to that expected from the rise in atmospheric CO2. The sink is estimated to have weakened during the 1990s toward a minimum uptake of only -0.8 ± 0.5 Pg C yr â 1 in 2000, and thereafter to have strengthened considerably to rates of more than -2.0 ± 0.5 Pg C yr â 1. These decadal variations originate mostly from the extratropical oceans while the tropical regions contribute primarily to interannual variations. Changes in sea-surface temperature affecting the solubility of CO2 explain part of these variations, particularly at subtropical latitudes. But most of the higher latitude changes are attributed to modifications in the surface concentration of dissolved inorganic carbon and alkalinity, induced by decadal variations in atmospheric forcing, with patterns that are reminiscent of those of the Northern and Southern Annular Modes. These decadal variations lead to a substantially smaller cumulative anthropogenic CO2 uptake of the ocean over the 1982 through 2011 period (reduction of 7.5 ± 5.5 Pg C) relative to that derived by the Global Carbon Budget
Global Carbon Budget: Ocean carbon sink.
CO2 emissions from human activities, the main contributor to global climate change, are set to rise again in 2014 reaching 40 billion tonnes CO2 The natural carbon âsinksâ on land and in the ocean absorb on average 55% of the total CO2 emissions, thus slowing the rate of global climate change Increasing CO2 in the oceans is causing ocean acidificatio
Pollution in the open oceans: 2009-2013
This review of pollution in the open oceans updates a report on this topic prepared by GESAMP five years previously (Reports and Studies No. 79, GESAMP, 2009). The latter report, the first from GESAMP focusing specifically on the oceans beyond the 200 m depth contour, was prepared for purposes of the Assessment of Assessments, the preparatory phase of a regular process for assessing the state of the marine environment, led jointly by the United Nations Environment Programme (UNEP) and the Intergovernmental Oceanographic Commission (UNESCO-IOC)
The ocean carbon sink â impacts, vulnerabilities and challenges
Carbon dioxide (CO2) is, next to water vapour, considered to be the most important natural greenhouse gas on Earth. Rapidly rising atmospheric CO2 concentrations caused by human actions such as fossil fuel burning, land-use change or cement production over the past 250 years have given cause for concern that changes in Earthâs climate system may progress at a much faster pace and larger extent than during the past 20 000 years. Investigating global carbon cycle pathways and finding suitable adaptation and mitigation strategies has, therefore, become of major concern in many research fields. The oceans have a key role in regulating atmospheric CO2 concentrations and currently take up about 25% of annual anthropogenic carbon emissions to the atmosphere. Questions that yet need to be answered are what the carbon uptake kinetics of the oceans will be in the future and how the increase in oceanic carbon inventory will affect its ecosystems and their services. This requires comprehensive investigations, including high-quality ocean carbon measurements on different spatial and temporal scales, the management of data in sophisticated databases, the application of Earth system models to provide future projections for given emission scenarios as well as a global synthesis and outreach to policy makers. In this paper, the current understanding of the ocean as an important carbon sink is reviewed with respect to these topics. Emphasis is placed on the complex interplay of different physical, chemical and biological processes that yield both positive and negative airâsea flux values for natural and anthropogenic CO2 as well as on increased CO2 (uptake) as the regulating force of the radiative warming of the atmosphere and the gradual acidification of the oceans. Major future ocean carbon challenges in the fields of ocean observations, modelling and process research as well as the relevance of other biogeochemical cycles and greenhouse gases are discussed
Accuracy of ocean CO2 uptake estimates at a risk by a reduction in the data collection
Observation-based quantification of ocean carbon dioxide (CO2) uptake relies on synthesis data sets such as the Surface Ocean CO2 ATlas (SOCAT). However, the data collection effort has dramatically declined and the number of annual data sets in SOCATv2023 decreased by âŒ35% from 2017 to 2021. This decline has led to a 65% increase (from 0.15 to 0.25 Pg C yrâ1) in the standard deviation of seven SOCAT-based air-sea CO2 flux estimates. Reducing the availability of the annual data to that in the year 2000 creates substantial bias (50%) in the long-term flux trend. The annual mean CO2 flux is insensitive to the seasonal skew of the SOCAT data and to the addition of the lower accuracy data set available in SOCAT. Our study highlights the need for sustained data collection and synthesis, to inform the Global Carbon Budget assessment, the UN-led climate negotiations, and measurement, reporting, and verification of ocean-based CO2 removal projects
Environmental drivers of coccolithophore abundance and calcification across Drake Passage (Southern Ocean)
Although coccolithophores are not as numerically common or as diverse in the Southern Ocean as they are in subpolar waters of the North Atlantic, a few species, such as Emiliania huxleyi, are found during the summer months. Little is actually known about the calcite production (CP) of these communities or how their distribution and physiology relate to environmental variables in this region. In February 2009, we made observations across Drake Passage (between South America and the Antarctic Peninsula) of coccolithophore distribution, CP, primary production, chlorophyll a and macronutrient concentrations, irradiance and carbonate chemistry. Although CP represented less than 1% of total carbon fixation, coccolithophores were widespread across Drake Passage. The B/C morphotype of E. huxleyi was the dominant coccolithophore, with low estimates of coccolith calcite ( 0.01 pmol C coccolith-/ from biometric measurements. Both cell-normalised calcification (0.01â0.16 pmol C cell-1 d-1/ and total CP (< 20 ÎŒmol C m-1 d-1/were much lower than those observed in the subpolar North Atlantic where E. huxleyi morphotype A is dominant. However, estimates of coccolith production rates were similar (0.1â1.2 coccoliths cell-1 h-1/ to previous measurements made in the subpolar North Atlantic. A multivariate statistical approach found that temperature and irradiance together were best able to explain the observed variation in species distribution and abundance (Spearmanâs rank correlation D0.4, p < 0.01). Rates of calcification per cell and coccolith production, as well as community CP and E. huxleyi abundance, were all positively correlated (p < 0.05) to the strong latitudinal gradient in temperature, irradiance and calcite saturation states across Drake Passage. Broadly, our results lend support to recent suggestions that coccolithophores, especially E. huxleyi, are advancing polewards. However, our in situ observations indicate that this may owe more to sea-surface warming and increasing irradiance rather than increasing CO2 concentrations
Intercomparison of carbonate chemistry measurements on a cruise in northwestern European shelf seas
Four carbonate system variables were measured in surface waters during a cruise aimed at investigating ocean acidification impacts traversing northwestern European shelf seas in the summer of 2011. High-resolution surface water data were collected for partial pressure of carbon dioxide (pCO2; using two independent instruments) and pH using the total pH scale (pHT), in addition to discrete measurements of total alkalinity and dissolved inorganic carbon. We thus overdetermined the carbonate system (four measured variables, two degrees of freedom), which allowed us to evaluate the level of agreement between the variables on a cruise whose main aim was not intercomparison, and thus where conditions were more representative of normal working conditions. Calculations of carbonate system variables from other measurements generally compared well with direct observations of the same variables (Pearsonâs correlation coefficient always greater than or equal to 0.94; mean residuals were similar to the respective accuracies of the measurements). We therefore conclude that four of the independent data sets of carbonate chemistry variables were of high quality. A diurnal cycle with a maximum amplitude of 41 ÎŒatm was observed in the difference between the pCO2 values obtained by the two independent analytical pCO2 systems, and this was partly attributed to irregular seawater flows to the equilibrator and partly to biological activity inside the seawater supply and one of the equilibrators. We discuss how these issues can be addressed to improve carbonate chemistry data quality on future research cruises
The reinvigoration of the Southern Ocean carbon sink
Several studies have suggested that the carbon sink in the Southern Oceanâthe oceanâs strongest region for the uptake of anthropogenic CO2 âhas weakened in recent decades. We demonstrated, on the basis of multidecadal analyses of surface ocean CO2 observations, that this weakening trend stopped around 2002, and by 2012, the Southern Ocean had regained its expected strength based on the growth of atmospheric CO2. All three Southern Ocean sectors have contributed to this reinvigoration of the carbon sink, yet differences in the processes between sectors exist, related to a tendency toward a zonally more asymmetric atmospheric circulation. The large decadal variations in the Southern Ocean carbon sink suggest a rather dynamic ocean carbon cycle that varies more in time than previously recognized
Reframing the carbon cycle of the subpolar Southern Ocean
Global climate is critically sensitive to physical and biogeochemical dynamics in the subpolar Southern Ocean, since it is here that deep, carbon-rich layers of the world ocean outcrop and exchange carbon with the atmosphere. Here, we present evidence that the conventional framework for the subpolar Southern Ocean carbon cycle, which attributes a dominant role to the vertical overturning circulation and shelf-sea processes, fundamentally misrepresents the drivers of regional carbon uptake. Observations in the Weddell Gyreâa key representative region of the subpolar Southern Oceanâshow that the rate of carbon uptake is set by an interplay between the Gyreâs horizontal circulation and the remineralization at mid-depths of organic carbon sourced from biological production in the central gyre. These results demonstrate that reframing the carbon cycle of the subpolar Southern Ocean is an essential step to better define its role in past and future climate change
- âŠ