47 research outputs found
Multiple expressed MHC class II loci in salmonids; details of one non-classical region in Atlantic salmon (Salmo salar)
<p>Abstract</p> <p>Background</p> <p>In teleosts, the Major Histocompatibility Complex (MHC) class I and class II molecules reside on different linkage groups as opposed to tetrapods and shark, where the class I and class II genes reside in one genomic region. Several teleost MHC class I regions have been sequenced and show varying number of class I genes. Salmonids have one major expressed MHC class I locus (UBA) in addition to varying numbers of non-classical genes. Two other more distant lineages are also identifyed denoted L and ZE. For class II, only one major expressed class II alpha (DAA) and beta (DAB) gene has been identified in salmonids so far.</p> <p>Results</p> <p>We sequenced a genomic region of 211 kb encompassing divergent MHC class II alpha (<it>Sasa-DBA</it>) and beta (<it>Sasa-DBB</it>) genes in addition to NRGN, TIPRL, TBCEL and TECTA. The region was not linked to the classical class II genes and had some synteny to genomic regions from other teleosts. Two additional divergent and expressed class II sequences denoted DCA and DDA were also identified in both salmon and trout. Expression patterns and lack of polymorphism make these genes non-classical class II analogues. <it>Sasa-DBB</it>, <it>Sasa-DCA </it>and <it>Sasa-DDA </it>had highest expression levels in liver, hindgut and spleen respectively, suggestive of distinctive functions in these tissues. Phylogenetic studies revealed more yet undescribed divergent expressed MHC class II molecules also in other teleosts.</p> <p>Conclusion</p> <p>We have characterised one genomic region containing expressed non-classical MHC class II genes in addition to four other genes not involved in immune function. Salmonids contain at least two expressed MHC class II beta genes and four expressed MHC class II alpha genes with properties suggestive of new functions for MHC class II in vertebrates. Collectively, our data suggest that the class II is worthy of more elaborate studies also in other teleost species.</p
Metabolic switching of human skeletal muscle cells in vitro
In this review we will focus on external factors that may modify energy metabolism in human skeletal muscle cells (myotubes) and the ability of the myotubes to switch between lipid and glucose oxidation. We describe the metabolic parameters suppressibility, adaptability and substrate-regulated flexibility, and show the influence of nutrients such as fatty acids and glucose (chronic hyperglycemia), and some pharmacological agents modifying nuclear receptors (PPAR and LXR), on these parameters in human myotubes. Possible cellular mechanisms for changes in these parameters will also be highlighted.The present work was funded by University of Oslo, The European Nutrigenomics
Organisation (NuGO), The Norwegian Diabetes Foundation, AstraZeneca, Freia
Chocolade Fabriks Medical Foundation, and The Anders Jahre’s Foundatio
Remodelling of oxidative energy metabolism by galactose improves glucose handling and metabolic switching in human skeletal muscle cells
Cultured human myotubes have a low mitochondrial oxidative potential. This study aims to remodel energy metabolism in myotubes by replacing glucose with galactose during growth and differentiation to ultimately examine the consequences for fatty acid and glucose metabolism. Exposure to galactose showed an increased [14C]oleic acid oxidation, whereas cellular uptake of oleic acid uptake was unchanged. On the other hand, both cellular uptake and oxidation of [14C]glucose increased in myotubes exposed to galactose. In the presence of the mitochondrial uncoupler carbonylcyanide p-trifluormethoxy-phenylhydrazone (FCCP) the reserve capacity for glucose oxidation was increased in cells grown with galactose. Staining and live imaging of the cells showed that myotubes exposed to galactose had a significant increase in mitochondrial and neutral lipid content. Suppressibility of fatty acid oxidation by acute addition of glucose was increased compared to cells grown in presence of glucose. In summary, we show that cells grown in galactose were more oxidative, had increased oxidative capacity and higher mitochondrial content, and showed an increased glucose handling. Interestingly, cells exposed to galactose showed an increased suppressibility of fatty acid metabolism. Thus, galactose improved glucose metabolism and metabolic switching of myotubes, representing a cell model that may be valuable for metabolic studies related to insulin resistance and disorders involving mitochondrial impairments
Are cultured human myotubes far from home?
Satellite cells can be isolated from skeletal muscle biopsies, activated to proliferating myoblasts and differentiated into multinuclear myotubes in culture. These cell cultures represent a model system for intact human skeletal muscle and can be modulated ex vivo. The advantages of this system are that the most relevant genetic background is available for the investigation of human disease (as opposed to rodent cell cultures), the extracellular environment can be precisely controlled and the cells are not immortalized, thereby offering the possibility of studying innate characteristics of the donor. Limitations in differentiation status (fiber type) of the cells and energy metabolism can be improved by proper treatment, such as electrical pulse stimulation to mimic exercise. This review focuses on the way that human myotubes can be employed as a tool for studying metabolism in skeletal muscles, with special attention to changes in muscle energy metabolism in obesity and type 2 diabetes
Comprehensive analysis of MHC class I genes from the U-, S-, and Z-lineages in Atlantic salmon
<p>Abstract</p> <p>Background</p> <p>We have previously sequenced more than 500 kb of the duplicated MHC class I regions in Atlantic salmon. In the IA region we identified the loci for the MHC class I gene <it>Sasa-UBA </it>in addition to a soluble MHC class I molecule, <it>Sasa-ULA</it>. A pseudolocus for <it>Sasa-UCA </it>was identified in the nonclassical IB region. Both regions contained genes for antigen presentation, as wells as orthologues to other genes residing in the human MHC region.</p> <p>Results</p> <p>The genomic localisation of two MHC class I lineages (Z and S) has been resolved. 7 BACs were sequenced using a combination of standard Sanger and 454 sequencing. The new sequence data extended the IA region with 150 kb identifying the location of one Z-lineage locus, <it>ZAA</it>. The IB region was extended with 350 kb including three new Z-lineage loci, <it>ZBA</it>, <it>ZCA </it>and <it>ZDA </it>in addition to a <it>UGA </it>locus. An allelic version of the IB region contained a functional <it>UDA </it>locus in addition to the <it>UCA </it>pseudolocus. Additionally a BAC harbouring two MHC class I genes (UHA) was placed on linkage group 14, while a BAC containing the S-lineage locus <it>SAA </it>(previously known as <it>UAA</it>) was placed on LG10. Gene expression studies showed limited expression range for all class I genes with exception of <it>UBA </it>being dominantly expressed in gut, spleen and gills, and <it>ZAA </it>with high expression in blood.</p> <p>Conclusion</p> <p>Here we describe the genomic organization of MHC class I loci from the U-, Z-, and S-lineages in Atlantic salmon. Nine of the described class I genes are located in the extension of the duplicated IA and IB regions, while three class I genes are found on two separate linkage groups. The gene organization of the two regions indicates that the IB region is evolving at a different pace than the IA region. Expression profiling, polymorphic content, peptide binding properties and phylogenetic relationship show that Atlantic salmon has only one MHC class Ia gene (<it>UBA</it>), in addition to a multitude of nonclassical MHC class I genes from the U-, S- and Z-lineages.</p
Genomic Organization of Duplicated Major Histocompatibility Complex Class I Regions in Atlantic Salmon (Salmo Salar)
Background: We have previously identified associations between major histocompatibility complex(MHC) class I and resistance towards bacterial and viral pathogens in Atlantic salmon. To evaluate if onlyMHC or also closely linked genes contributed to the observed resistance we ventured into sequencing ofthe duplicated MHC class I regions of Atlantic salmon.Results: Nine BACs covering more than 500 kb of the two duplicated MHC class I regions of Atlanticsalmon were sequenced and the gene organizations characterized. Both regions contained the proteasomecomponents PSMB8, PSMB9, PSMB9-like and PSMB10 in addition to the transporter for antigen processingTAP2, as well as genes for KIFC1, ZBTB22, DAXX, TAPBP, BRD2, COL11A2, RXRB and SLC39A7. TheIA region contained the recently reported MHC class I Sasa-ULA locus residing approximately 50 kbupstream of the major Sasa-UBA locus. The duplicated class IB region contained an MHC class I locusresembling the rainbow trout UCA locus, but although transcribed it was a pseudogene. No other MHCclass I-like genes were detected in the two duplicated regions. Two allelic BACs spanning the UBA locushad 99.2% identity over 125 kb, while the IA region showed 82.5% identity over 136 kb to the IB region.The Atlantic salmon IB region had an insert of 220 kb in comparison to the IA region containing threechitin synthase genes.Conclusion: We have characterized the gene organization of more than 500 kb of the two duplicatedMHC class I regions in Atlantic salmon. Although Atlantic salmon and rainbow trout are closely related,the gene organization of their IB region has undergone extensive gene rearrangements. The Atlanticsalmon has only one class I UCA pseudogene in the IB region while trout contains the four MHC UCA, UDA,UEA and UFA class I loci. The large differences in gene content and most likely function of the salmon andtrout class IB region clearly argues that sequencing of salmon will not necessarily provide informationrelevant for trout and vice versa
Electrical Pulse Stimulation of Cultured Human Skeletal Muscle Cells as an In Vitro Model of Exercise
Background and Aims
Physical exercise leads to substantial adaptive responses in skeletal muscles and plays a central role in a healthy life style. Since exercise induces major systemic responses, underlying cellular mechanisms are difficult to study in vivo. It was therefore desirable to develop an in vitro model that would resemble training in cultured human myotubes.
Methods
Electrical pulse stimulation (EPS) was applied to adherent human myotubes. Cellular contents of ATP, phosphocreatine (PCr) and lactate were determined. Glucose and oleic acid metabolism were studied using radio-labeled substrates, and gene expression was analyzed using real-time RT-PCR. Mitochondrial content and function were measured by live imaging and determination of citrate synthase activity, respectively. Protein expression was assessed by electrophoresis and immunoblotting.
Results
High-frequency, acute EPS increased deoxyglucose uptake and lactate production, while cell contents of both ATP and PCr decreased. Chronic, low-frequency EPS increased oxidative capacity of cultured myotubes by increasing glucose metabolism (uptake and oxidation) and complete fatty acid oxidation. mRNA expression level of pyruvate dehydrogenase complex 4 (PDK4) was significantly increased in EPS-treated cells, while mRNA expressions of interleukin 6 (IL-6), cytochrome C and carnitin palmitoyl transferase b (CPT1b) also tended to increase. Intensity of MitoTracker®Red FM was doubled after 48 h of chronic, low-frequency EPS. Protein expression of a slow fiber type marker (MHCI) was increased in EPS-treated cells.
Conclusions
Our results imply that in vitro EPS (acute, high-frequent as well as chronic, low-frequent) of human myotubes may be used to study effects of exercise.This work was funded by the University of Oslo, Oslo University College, the Norwegian Diabetes Foundation, the Freia Chocolade Fabriks Medical Foundation and the Anders Jahre’s Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Metabolic switching of human skeletal muscle cells in vitro
In this review we will focus on external factors that may modify energy metabolism in human skeletal muscle cells (myotubes) and the ability of the myotubes to switch between lipid and glucose oxidation. We describe the metabolic parameters suppressibility, adaptability and substrate-regulated flexibility, and show the influence of nutrients such as fatty acids and glucose (chronic hyperglycemia), and some pharmacological agents modifying nuclear receptors (PPAR and LXR), on these parameters in human myotubes. Possible cellular mechanisms for changes in these parameters will also be highlighted
Human HDL subclasses modulate energy metabolism in skeletal muscle cells
In addition to its antiatherogenic role, HDL reportedly modulates energy metabolism at the whole-body level. HDL functionality is associated with its structure and composition, and functional activities can differ between HDL subclasses. Therefore, we studied if HDL2 and HDL3, the two major HDL subclasses, are able to modulate energy metabolism of skeletal muscle cells. Differentiated mouse and primary human skeletal muscle myotubes were used to investigate the influences of human HDL2 and HDL3 on glucose and fatty uptake and oxidation. HDL-induced changes in lipid distribution and mRNA expression of genes related to energy substrate metabolism, mitochondrial function, and HDL receptors were studied with human myotubes. Additionally, we examined the effects of apoA-I and discoidal, reconstituted HDL particles on substrate metabolism. In mouse myotubes, HDL subclasses strongly enhanced glycolysis upon high and low glucose concentrations. HDL3 caused a minor increase in ATP-linked respiration upon glucose conditioning but HDL2 improved complex I–mediated mitochondrial respiration upon fatty acid treatment. In human myotubes, glucose metabolism was attenuated but fatty acid uptake and oxidation were markedly increased by both HDL subclasses, which also increased mRNA expression of genes related to fatty acid metabolism and HDL receptors. Finally, both HDL subclasses induced incorporation of oleic acid into different lipid classes. These results, demonstrating that HDL subclasses enhance fatty acid oxidation in human myotubes but improve anaerobic metabolism in mouse myotubes, support the role of HDL as a circulating modulator of energy metabolism. Exact mechanisms and components of HDL causing the change, require further investigation
Increased glycolysis and higher lactate production in hyperglycemic myotubes
Previous studies have shown that chronic hyperglycemia impairs glucose and fatty acid oxidation in cultured human myotubes. To further study the hyperglycemia-induced suppression of oxidation, lactate oxidation, mitochondrial function and glycolytic rate were evaluated. Further, we examined the intracellular content of reactive oxygen species (ROS), production of lactate and conducted pathway-ANOVA analysis on microarray data. In addition, the roles of the pentose phosphate pathway (PPP) and the hexosamine pathway were evaluated. Lactic acid oxidation was suppressed in hyperglycemic versus normoglycaemic myotubes. No changes in mitochondrial function or ROS concentration were observed. Pathway-ANOVA analysis indicated several upregulated pathways in hyperglycemic cells, including glycolysis and PPP. Functional studies showed that glycolysis and lactate Production were higher in hyperglycemic than normoglycaemic cells. However, there were no indications of involvement of PPP or the hexosamine pathway. In conclusion, hyperglycemia reduced substrate oxidation while increasing glycolysis and lactate production in cultured human myotubes