44,864 research outputs found
Which way do I go? Neural activation in response to feedback and spatial processing in a virtual T-maze
In 2 human event-related brain potential (ERP) experiments, we examined the feedback error-related negativity (fERN), an ERP component associated with reward processing by the midbrain dopamine system, and the N170, an ERP component thought to be generated by the medial temporal lobe (MTL), to investigate the contributions of these neural systems toward learning to find rewards in a "virtual T-maze" environment. We found that feedback indicating the absence versus presence of a reward differentially modulated fERN amplitude, but only when the outcome was not predicted by an earlier stimulus. By contrast, when a cue predicted the reward outcome, then the predictive cue (and not the feedback) differentially modulated fERN amplitude. We further found that the spatial location of the feedback stimuli elicited a large N170 at electrode sites sensitive to right MTL activation and that the latency of this component was sensitive to the spatial location of the reward, occurring slightly earlier for rewards following a right versus left turn in the maze. Taken together, these results confirm a fundamental prediction of a dopamine theory of the fERN and suggest that the dopamine and MTL systems may interact in navigational learning tasks
Computational experiments in the optimal slewing of flexible structures
Numerical experiments on the problem of moving a flexible beam are discussed. An optimal control problem is formulated and transcribed into a form which can be solved using semi-infinite optimization techniques. All experiments were carried out on a SUN 3 microcomputer
Power spectra methods for a stochastic description of diffusion on deterministically growing domains
A central challenge in developmental biology is understanding the creation of robust spatiotemporal heterogeneity. Generally, the mathematical treatments of biological systems have used continuum, mean-field hypotheses for their constituent parts, which ignores any sources of intrinsic stochastic effects. In this paper we consider a stochastic space-jump process as a description of diffusion, i.e., particles are able to undergo a random walk on a discretized domain. By developing analytical Fourier methods we are able to probe this probabilistic framework, which gives us insight into the patterning potential of diffusive systems. Further, an alternative description of domain growth is introduced, with which we are able to rigorously link the mean-field and stochastic descriptions. Finally, through combining these ideas, it is shown that such stochastic descriptions of diffusion on a deterministically growing domain are able to support the nucleation of states that are far removed from the deterministic mean-field steady state
Stochastic reaction & diffusion on growing domains: understanding the breakdown of robust pattern formation
Many biological patterns, from population densities to animal coat markings, can be thought of as heterogeneous spatiotemporal distributions of mobile agents. Many mathematical models have been proposed to account for the emergence of this complexity, but, in general, they have consisted of deterministic systems of differential equations, which do not take into account the stochastic nature of population interactions. One particular, pertinent criticism of these deterministic systems is that the exhibited patterns can often be highly sensitive to changes in initial conditions, domain geometry, parameter values, etc. Due to this sensitivity, we seek to understand the effects of stochasticity and growth on paradigm biological patterning models. In this paper, we extend spatial Fourier analysis and growing domain mapping techniques to encompass stochastic Turing systems. Through this we find that the stochastic systems are able to realize much richer dynamics than their deterministic counterparts, in that patterns are able to exist outside the standard Turing parameter range. Further, it is seen that the inherent stochasticity in the reactions appears to be more important than the noise generated by growth, when considering which wave modes are excited. Finally, although growth is able to generate robust pattern sequences in the deterministic case, we see that stochastic effects destroy this mechanism for conferring robustness. However, through Fourier analysis we are able to suggest a reason behind this lack of robustness and identify possible mechanisms by which to reclaim it
Influence of stochastic domain growth on pattern nucleation for diffusive systems with internal noise
Numerous mathematical models exploring the emergence of complexity within developmental biology incorporate diffusion as the dominant mechanism of transport. However, self-organizing paradigms can exhibit the biologically undesirable property of extensive sensitivity, as illustrated by the behavior of the French-flag model in response to intrinsic noise and Turing’s model when subjected to fluctuations in initial conditions. Domain growth is known to be a stabilizing factor for the latter, though the interaction of intrinsic noise and domain growth is underexplored, even in the simplest of biophysical settings. Previously, we developed analytical Fourier methods and a description of domain growth that allowed us to characterize the effects of deterministic domain growth on stochastically diffusing systems. In this paper we extend our analysis to encompass stochastically growing domains. This form of growth can be used only to link the meso- and macroscopic domains as the “box-splitting” form of growth on the microscopic scale has an ill-defined thermodynamic limit. The extension is achieved by allowing the simulated particles to undergo random walks on a discretized domain, while stochastically controlling the length of each discretized compartment. Due to the dependence of diffusion on the domain discretization, we find that the description of diffusion cannot be uniquely derived. We apply these analytical methods to two justified descriptions, where it is shown that, under certain conditions, diffusion is able to support a consistent inhomogeneous state that is far removed from the deterministic equilibrium, without additional kinetics. Finally, a logistically growing domain is considered. Not only does this show that we can deal with nonmonotonic descriptions of stochastic growth, but it is also seen that diffusion on a stationary domain produces different effects to diffusion on a domain that is stationary “on average.
Study of explosions in the NASA-MSC Vibration and Acoustic Test Facility /VATF/ Final report
Damage potential of titanium alloy pressure spheres relative to spacecraft vibration testin
Sheep Practice
With nearly 50,000,000 sheep in this country, and over a million head in. the various middle western states, this phase of practice offers many opportunities to the veterinarian in general country work
Multipac, a multiple pool processor and computer for a spacecraft central data system
Spacecraft central data system computer used on deep space probe
- …