40,770 research outputs found

    Identities for hyperelliptic P-functions of genus one, two and three in covariant form

    Full text link
    We give a covariant treatment of the quadratic differential identities satisfied by the P-functions on the Jacobian of smooth hyperelliptic curves of genera 1, 2 and 3

    An evaluation of potentially useful separator materials for nickel-cadmium (Ni-Cd] satellite batteries

    Get PDF
    An evaluation intended to determine the potential suitability and probable efficacy of a group of separator materials for use in nickel-cadmium (Ni-Cd) satellite batteries was carried out. These results were obtained using test procedures established in an earlier evaluation of other separator materials, some of which were used in experimental battery cells subjected to simulated use conditions. The properties that appear to be most important are: high electrolyte absorptivity, good electrolyte retention, low specific resistivity, rapid wettability and low resistance to air permeation. Wicking characteristics and wet-out time seem to be more important with respect to the initial filling of the battery with the electrolyte

    On a generalization of Jacobi's elliptic functions and the Double Sine-Gordon kink chain

    Get PDF
    A generalization of Jacobi's elliptic functions is introduced as inversions of hyperelliptic integrals. We discuss the special properties of these functions, present addition theorems and give a list of indefinite integrals. As a physical application we show that periodic kink solutions (kink chains) of the double sine-Gordon model can be described in a canonical form in terms of generalized Jacobi functions.Comment: 18 pages, 9 figures, 3 table

    Prosecuting Attorney and His Office

    Get PDF

    Hyperelliptic Solutions of KdV and KP equations: Reevaluation of Baker's Study on Hyperelliptic Sigma Functions

    Full text link
    Explicit function forms of hyperelliptic solutions of Korteweg-de Vries (KdV) and \break Kadomtsev-Petviashvili (KP) equations were constructed for a given curve y2=f(x)y^2 = f(x) whose genus is three. This study was based upon the fact that about one hundred years ago (Acta Math. (1903) {\bf{27}}, 135-156), H. F. Baker essentially derived KdV hierarchy and KP equation by using bilinear differential operator D{\bold{D}}, identities of Pfaffians, symmetric functions, hyperelliptic σ\sigma-function and \wp-functions; μν=μνlogσ\wp_{\mu \nu} = -\partial_\mu \partial_\nu \log \sigma =(DμDνσσ)/2σ2= - ({\bold{D}}_\mu {\bold{D}}_\nu \sigma \sigma)/2\sigma^2. The connection between his theory and the modern soliton theory was also discussed.Comment: AMS-Tex, 12 page

    Exact solutions for a class of integrable Henon-Heiles-type systems

    Full text link
    We study the exact solutions of a class of integrable Henon-Heiles-type systems (according to the analysis of Bountis et al. (1982)). These solutions are expressed in terms of two-dimensional Kleinian functions. Special periodic solutions are expressed in terms of the well-known Weierstrass function. We extend some of our results to a generalized Henon-Heiles-type system with n+1 degrees of freedom.Comment: RevTeX4-1, 13 pages, Submitted to J. Math. Phy

    Powers and Duties of the Prosectuing Attorney: Quasi-Criminal and Civil

    Get PDF

    Rodrigues Formula for the Nonsymmetric Multivariable Laguerre Polynomial

    Full text link
    Extending a method developed by Takamura and Takano, we present the Rodrigues formula for the nonsymmetric multivariable Laguerre polynomials which form the orthogonal basis for the BNB_{N}-type Calogero model with distinguishable particles. Our construction makes it possible for the first time to algebraically generate all the nonsymmetric multivariable Laguerre polynomials with different parities for each variable.Comment: 6 pages, LaTe
    corecore