842 research outputs found

    Structure and functional motifs of GCR1, the only plant protein with a GPCR fold?

    Get PDF
    Whether GPCRs exist in plants is a fundamental biological question. Interest in deorphanizing new G protein coupled receptors (GPCRs), arises because of their importance in signaling. Within plants, this is controversial as genome analysis has identified 56 putative GPCRs, including GCR1 which is reportedly a remote homologue to class A, B and E GPCRs. Of these, GCR2, is not a GPCR; more recently it has been proposed that none are, not even GCR1. We have addressed this disparity between genome analysis and biological evidence through a structural bioinformatics study, involving fold recognition methods, from which only GCR1 emerges as a strong candidate. To further probe GCR1, we have developed a novel helix alignment method, which has been benchmarked against the the class A – class B - class F GPCR alignments. In addition, we have presented a mutually consistent set of alignments of GCR1 homologues to class A, class B and class F GPCRs, and shown that GCR1 is closer to class A and /or class B GPCRs than class A, class B or class F GPCRs are to each other. To further probe GCR1, we have aligned transmembrane helix 3 of GCR1 to each of the 6 GPCR classes. Variability comparisons provide additional evidence that GCR1 homologues have the GPCR fold. From the alignments and a GCR1 comparative model we have identified motifs that are common to GCR1, class A, B and E GPCRs. We discuss the possibilities that emerge from this controversial evidence that GCR1 has a GPCR fol

    Association of snRNA genes with coiled bodies is mediated by nascent snRNA transcripts

    Get PDF
    AbstractBackground: Coiled bodies are nuclear organelles that are highly enriched in small nuclear ribonucleoproteins (snRNPs) and certain basal transcription factors. Surprisingly, coiled bodies not only contain mature U snRNPs but also associate with specific chromosomal loci, including gene clusters that encode U snRNAs and histone messenger RNAs. The mechanism(s) by which coiled bodies associate with these genes is completely unknown.Results: Using stable cell lines, we show that artificial tandem arrays of human U1 and U2 snRNA genes colocalize with coiled bodies and that the frequency of the colocalization depends directly on the transcriptional activity of the array. Association of the genes with coiled bodies was abolished when the artificial U2 arrays contained promoter mutations that prevent transcription or when RNA polymerase II transcription was globally inhibited by α-amanitin. Remarkably, the association was also abolished when the U2 snRNA coding regions were replaced by heterologous sequences.Conclusions: The requirement for the U2 snRNA coding region indicates that association of snRNA genes with coiled bodies is mediated by the nascent U2 RNA itself, not by DNA or DNA-bound proteins. Our data provide the first evidence that association of genes with a nuclear organelle can be directed by an RNA and suggest an autogenous feedback regulation model

    On the recurrence times of neutron star X-ray binary transients and the nature of the Galactic Centre quiescent X-ray binaries

    Get PDF
    The presence of some X-ray sources in the Galactic Centre region which show variability, but do not show outbursts in over a decade of monitoring has been used to argue for the presence of a large population of stellar mass black holes in this region. A core element of the arguments that these objects are accreting black holes is the claim that neutron stars (NSs) in low mass X-ray binaries (LMXBs) do not have long transient recurrence times. We demonstrate in this paper that about half of the known transient LMXBs with clear signatures for NS primaries have recurrence times in excess of a decade for outbursts at the sensitivity of MAXI. We furthermore show that, in order to reconcile the expected total population of NS LMXBs with the observed one and with the millisecond radio pulsar (MSRP) population of the Galaxy, systems with recurrence times well in excess of a century for outbursts detectable by instruments like MAXI must be the dominant population of NS LMXBs, and that few of these systems have yet been discovered.Comment: 7 pages, accepted to MNRAS, small correction made to abstract from originally posted version to remove an ambiguit
    • …
    corecore