137 research outputs found

    The long and the short of it: modelling double neutron star and collapsar Galactic dynamics

    Full text link
    The work presented here examines populations of double compact binary systems and tidally enhanced collapsars. We make use of BINPOP and BINKIN, two components of a recently developed population synthesis package. Results focus on correlations of both binary and spatial evolutionary population characteristics. Pulsar and long duration gamma-ray burst observations are used in concert with our models to draw the conclusions that: double neutron star binaries can merge rapidly on timescales of a few million years (much less than that found for the observed double neutron star population), common envelope evolution within these models is a very important phase in double neutron star formation, and observations of long gamma-ray burst projected distances are more centrally concentrated than our simulated coalescing double neutron star and collapsar Galactic populations. Better agreement is found with dwarf galaxy models although the outcome is strongly linked to the assumed birth radial distribution. The birth rate of the double neutron star population in our models range from 4-160 Myr^-1 and the merger rate ranges from 3-150 Myr^-1. The upper and lower limits of the rates results from including electron capture supernova kicks to neutron stars and decreasing the common envelope efficiency respectively. Our double black hole merger rates suggest that black holes should receive an asymmetric kick at birth.Comment: Accepted by MNRAS, 18 pages, 12 figures, 5 table

    Spotting Radio Transients with the help of GPUs

    Full text link
    Exploration of the time-domain radio sky has huge potential for advancing our knowledge of the dynamic universe. Past surveys have discovered large numbers of pulsars, rotating radio transients and other transient radio phenomena; however, they have typically relied upon off-line processing to cope with the high data and processing rate. This paradigm rules out the possibility of obtaining high-resolution base-band dumps of significant events or of performing immediate follow-up observations, limiting analysis power to what can be gleaned from detection data alone. To overcome this limitation, real-time processing and detection of transient radio events is required. By exploiting the significant computing power of modern graphics processing units (GPUs), we are developing a transient-detection pipeline that runs in real-time on data from the Parkes radio telescope. In this paper we discuss the algorithms used in our pipeline, the details of their implementation on the GPU and the challenges posed by the presence of radio frequency interference.Comment: 4 Pages. To appear in the proceedings of ADASS XXI, ed. P.Ballester and D.Egret, ASP Conf. Serie

    Pulsar Applications of the Caltech Parkes Swinburne Baseband Processing System

    Get PDF
    The Caltech-Parkes-Swinburne Recorder (CPSR) was installed at the Parkes Radio-telescope in August of 1998. It is capable of continuously two-bit quadrature-sampling a 20 MHz bandpass in two polarizations, though other configurations are possible. Since its successful installation, over 17 Terabytes of observational data have been recorded. These data were processed using the Swinburne Baseband Processing System (SBPS), a suite of data management and reduction software executed using a Beowulf-style cluster of high-performance workstations. A description of CPSR and SBPS is presented herein, followed by a brief presentation of some results from the past year of observations, and an outline of possible future uses of the system

    Furnishing the Galaxy with Pulsars

    Full text link
    The majority of pulsar population synthesis studies performed to date have focused on isolated pulsar evolution. Those that have incorporated pulsar evolution within binary systems have tended to either treat binary evolution poorly of evolve the pulsar population in an ad-hoc manner. Here we present the first model of the Galactic field pulsar population that includes a comprehensive treatment of both binary and pulsar evolution. Synthetic observational surveys mimicking a variety of radio telescopes are then performed on this population. As such, a complete and direct comparison of model data with observations of the pulsar population within the Galactic disk is now possible. The tool used for completing this work is a code comprised of three components: stellar/binary evolution, Galactic kinematics and survey selection effects. Here we give a brief overview of the method and assumptions involved with each component. Some preliminary results are also presented as well as plans for future applications of the code.Comment: 3 pages, 3 figures, Conference: "40 years of pulsars: Millisecond pulsars, magnetars and more", McGill University, Montreal, Canada, ed. A.Cumming et al., AI

    High time-resolution observations of the Vela pulsar

    Full text link
    We present high time resolution observations of single pulses from the Vela pulsar (PSR B0833-45) made with a baseband recording system at observing frequencies of 660 and 1413 MHz. We have discovered two startling features in the 1413 MHz single pulse data. The first is the presence of giant micro-pulses which are confined to the leading edge of the pulse profile. One of these pulses has a peak flux density in excess of 2500 Jy, more than 40 times the integrated pulse peak. The second new result is the presence of a large amplitude gaussian component on the trailing edge of the pulse profile. This component can exceed the main pulse in intensity but is switched on only relatively rarely. Fluctutation spectra reveal a possible periodicity in this feature of 140 pulse periods. Unlike the rest of the profile, this component has low net polarization and emits predominantly in the orthogonal mode. This feature appears to be unique to the Vela pulsar. We have also detected microstructure in the Vela pulsar for the first time. These same features are present in the 660 MHz data. We suggest that the full width of the Vela pulse profile might be as large as 10 ms but that the conal edges emit only rarely.Comment: 6 pages, 5 figures, In Press with ApJ Letter
    • …
    corecore