592 research outputs found

    The Role of Tiny Grains on the Accretion Process in Protoplanetary Disks

    Full text link
    Tiny grains such as PAHs have been thought to dramatically reduce the coupling between gas and magnetic fields in weakly ionized gas such as in protoplanetary disks (PPDs) because they provide tremendous surface area to recombine free electrons. The presence of tiny grains in PPDs thus raises the question of whether the magnetorotational instability (MRI) is able to drive rapid accretion to be consistent with observations. Charged tiny grains have similar conduction properties as ions, whose presence leads to qualitatively new behaviors in the conductivity tensor, characterized by n_bar/n_e>1, where n_e and n_bar denote the number densities of free electrons and all other charged species respectively. In particular, Ohmic conductivity becomes dominated by charged grains rather than electrons when n_bar/n_e exceeds about 10^3, and Hall and ambipolar diffusion (AD) coefficients are reduced by a factor of (n_bar/n_e)^2 in the AD dominated regime relative to that in the Ohmic regime. Applying the methodology of Bai (2011), we find that in PPDs, when PAHs are sufficiently abundant (>1e-9 per H_2), there exists a transition radius r_trans of about 10-20 AU, beyond which the MRI active layer extends to the disk midplane. At r<r_trans, the optimistically predicted MRI-driven accretion rate M_dot is one to two orders of magnitude smaller than that in the grain-free case, which is too small compared with the observed rates, but is in general no smaller than the predicted M_dot with solar-abundance 0.1 micron grains. At r>r_trans, we find that remarkably, the predicted M_dot exceeds the grain-free case due to a net reduction of AD by charged tiny grains, and reaches a few times 1e-8M_Sun/yr. This is sufficient to account for the observed M_dot in transitional disks. Larger grains (>0.1 micron) are too massive to reach such high abundance as tiny grains and to facilitate the accretion process.Comment: 10 pages, 6 figures, accepted for publication in Ap

    Wind-driven Accretion in Protoplanetary Disks. I: Suppression of the Magnetorotational Instability and Launching of the Magnetocentrifugal Wind

    Full text link
    We perform local, vertically stratified shearing-box MHD simulations of protoplanetary disks (PPDs) at a fiducial radius of 1 AU that take into account the effects of both Ohmic resistivity and ambipolar diffusion (AD). The magnetic diffusion coefficients are evaluated self-consistently from a look-up table based on equilibrium chemistry. We first show that the inclusion of AD dramatically changes the conventional picture of layered accretion. Without net vertical magnetic field, the system evolves into a toroidal field dominated configuration with extremely weak turbulence in the far-UV ionization layer that is far too inefficient to drive rapid accretion. In the presence of a weak net vertical field (plasma beta~10^5 at midplane), we find that the MRI is completely suppressed, resulting in a fully laminar flow throughout the vertical extent of the disk. A strong magnetocentrifugal wind is launched that efficiently carries away disk angular momentum and easily accounts for the observed accretion rate in PPDs. Moreover, under a physical disk wind geometry, all the accretion flow proceeds through a strong current layer with thickness of ~0.3H that is offset from disk midplane with radial velocity of up to 0.4 times the sound speed. Both Ohmic resistivity and AD are essential for the suppression of the MRI and wind launching. The efficiency of wind transport increases with increasing net vertical magnetic flux and the penetration depth of the FUV ionization. Our laminar wind solution has important implications on planet formation and global evolution of PPDs.Comment: 23 pages, 13 figures, accepted to Ap

    Dynamics of Solids in the Midplane of Protoplanetary Disks: Implications for Planetesimal Formation

    Full text link
    (Abridged) We present local 2D and 3D hybrid numerical simulations of particles and gas in the midplane of protoplanetary disks (PPDs) using the Athena code. The particles are coupled to gas aerodynamically, with particle-to-gas feedback included. Magnetorotational turbulence is ignored as an approximation for the dead zone of PPDs, and we ignore particle self-gravity to study the precursor of planetesimal formation. Our simulations include a wide size distribution of particles, ranging from strongly coupled particles with dimensionless stopping time tau_s=Omega t_stop=1e-4 to marginally coupled ones with tau_s=1 (where Omega is the orbital frequency, t_stop is the particle friction time), and a wide range of solid abundances. Our main results are: 1. Particles with tau_s>=0.01 actively participate in the streaming instability, generate turbulence and maintain the height of the particle layer before Kelvin-Helmholtz instability is triggered. 2. Strong particle clumping as a consequence of the streaming instability occurs when a substantial fraction of the solids are large (tau_s>=0.01) and when height-integrated solid to gas mass ratio Z is super-solar. 3. The radial drift velocity is reduced relative to the conventional Nakagawa-Sekiya-Hayashi (NSH) model, especially at high Z. We derive a generalized NSH equilibrium solution for multiple particle species which fits our results very well. 4. Collision velocity between particles with tau_s>=0.01 is dominated by differential radial drift, and is strongly reduced at larger Z. 5. There exist two positive feedback loops with respect to the enrichment of local disk solid abundance and grain growth. All these effects promote planetesimal formation.Comment: 25 pages (emulate apj), accepted to Ap