16 research outputs found
From covariant to canonical formulations of discrete gravity
Starting from an action for discretized gravity we derive a canonical
formalism that exactly reproduces the dynamics and (broken) symmetries of the
covariant formalism. For linearized Regge calculus on a flat background --
which exhibits exact gauge symmetries -- we derive local and first class
constraints for arbitrary triangulated Cauchy surfaces. These constraints have
a clear geometric interpretation and are a first step towards obtaining
anomaly--free constraint algebras for canonical lattice gravity. Taking higher
order dynamics into account the symmetries of the action are broken. This
results in consistency conditions on the background gauge parameters arising
from the lowest non--linear equations of motion. In the canonical framework the
constraints to quadratic order turn out to depend on the background gauge
parameters and are therefore pseudo constraints. These considerations are
important for connecting path integral and canonical quantizations of gravity,
in particular if one attempts a perturbative expansion.Comment: 37 pages, 5 figures (minor modifications, matches published version +
updated references
From the discrete to the continuous - towards a cylindrically consistent dynamics
Discrete models usually represent approximations to continuum physics.
Cylindrical consistency provides a framework in which discretizations mirror
exactly the continuum limit. Being a standard tool for the kinematics of loop
quantum gravity we propose a coarse graining procedure that aims at
constructing a cylindrically consistent dynamics in the form of transition
amplitudes and Hamilton's principal functions. The coarse graining procedure,
which is motivated by tensor network renormalization methods, provides a
systematic approximation scheme towards this end. A crucial role in this coarse
graining scheme is played by embedding maps that allow the interpretation of
discrete boundary data as continuum configurations. These embedding maps should
be selected according to the dynamics of the system, as a choice of embedding
maps will determine a truncation of the renormalization flow.Comment: 22 page
(Broken) Gauge Symmetries and Constraints in Regge Calculus
We will examine the issue of diffeomorphism symmetry in simplicial models of
(quantum) gravity, in particular for Regge calculus. We find that for a
solution with curvature there do not exist exact gauge symmetries on the
discrete level. Furthermore we derive a canonical formulation that exactly
matches the dynamics and hence symmetries of the covariant picture. In this
canonical formulation broken symmetries lead to the replacements of constraints
by so--called pseudo constraints. These considerations should be taken into
account in attempts to connect spin foam models, based on the Regge action,
with canonical loop quantum gravity, which aims at implementing proper
constraints. We will argue that the long standing problem of finding a
consistent constraint algebra for discretized gravity theories is equivalent to
the problem of finding an action with exact diffeomorphism symmetries. Finally
we will analyze different limits in which the pseudo constraints might turn
into proper constraints. This could be helpful to infer alternative
discretization schemes in which the symmetries are not broken.Comment: 32 pages, 15 figure
Regge calculus from a new angle
In Regge calculus space time is usually approximated by a triangulation with
flat simplices. We present a formulation using simplices with constant
sectional curvature adjusted to the presence of a cosmological constant. As we
will show such a formulation allows to replace the length variables by 3d or 4d
dihedral angles as basic variables. Moreover we will introduce a first order
formulation, which in contrast to using flat simplices, does not require any
constraints. These considerations could be useful for the construction of
quantum gravity models with a cosmological constant.Comment: 8 page
Phase space descriptions for simplicial 4d geometries
Starting from the canonical phase space for discretised (4d) BF-theory, we
implement a canonical version of the simplicity constraints and construct phase
spaces for simplicial geometries. Our construction allows us to study the
connection between different versions of Regge calculus and approaches using
connection variables, such as loop quantum gravity. We find that on a fixed
triangulation the (gauge invariant) phase space associated to loop quantum
gravity is genuinely larger than the one for length and even area Regge
calculus. Rather, it corresponds to the phase space of area-angle Regge
calculus, as defined by Dittrich and Speziale in [arXiv:0802.0864] (prior to
the imposition of gluing constraints, that ensure the metricity of the
triangulation). We argue that this is due to the fact that the simplicity
constraints are not fully implemented in canonical loop quantum gravity.
Finally, we show that for a subclass of triangulations one can construct first
class Hamiltonian and Diffeomorphism constraints leading to flat 4d
space-times.Comment: corrected structure constants, several references ad
Operator Spin Foam Models
The goal of this paper is to introduce a systematic approach to spin foams.
We define operator spin foams, that is foams labelled by group representations
and operators, as the main tool. An equivalence relation we impose in the set
of the operator spin foams allows to split the faces and the edges of the
foams. The consistency with that relation requires introduction of the
(familiar for the BF theory) face amplitude. The operator spin foam models are
defined quite generally. Imposing a maximal symmetry leads to a family we call
natural operator spin foam models. This symmetry, combined with demanding
consistency with splitting the edges, determines a complete characterization of
a general natural model. It can be obtained by applying arbitrary (quantum)
constraints on an arbitrary BF spin foam model. In particular, imposing
suitable constraints on Spin(4) BF spin foam model is exactly the way we tend
to view 4d quantum gravity, starting with the BC model and continuing with the
EPRL or FK models. That makes our framework directly applicable to those
models. Specifically, our operator spin foam framework can be translated into
the language of spin foams and partition functions. We discuss the examples: BF
spin foam model, the BC model, and the model obtained by application of our
framework to the EPRL intertwiners.Comment: 19 pages, 11 figures, RevTex4.
Coarse graining methods for spin net and spin foam models
We undertake first steps in making a class of discrete models of quantum
gravity, spin foams, accessible to a large scale analysis by numerical and
computational methods. In particular, we apply Migdal-Kadanoff and Tensor
Network Renormalization schemes to spin net and spin foam models based on
finite Abelian groups and introduce `cutoff models' to probe the fate of gauge
symmetries under various such approximated renormalization group flows. For the
Tensor Network Renormalization analysis, a new Gauss constraint preserving
algorithm is introduced to improve numerical stability and aid physical
interpretation. We also describe the fixed point structure and establish an
equivalence of certain models.Comment: 39 pages, 13 figures, 1 tabl
Feynman diagrammatic approach to spin foams
"The Spin Foams for People Without the 3d/4d Imagination" could be an
alternative title of our work. We derive spin foams from operator spin network
diagrams} we introduce. Our diagrams are the spin network analogy of the
Feynman diagrams. Their framework is compatible with the framework of Loop
Quantum Gravity. For every operator spin network diagram we construct a
corresponding operator spin foam. Admitting all the spin networks of LQG and
all possible diagrams leads to a clearly defined large class of operator spin
foams. In this way our framework provides a proposal for a class of 2-cell
complexes that should be used in the spin foam theories of LQG. Within this
class, our diagrams are just equivalent to the spin foams. The advantage,
however, in the diagram framework is, that it is self contained, all the
amplitudes can be calculated directly from the diagrams without explicit
visualization of the corresponding spin foams. The spin network diagram
operators and amplitudes are consistently defined on their own. Each diagram
encodes all the combinatorial information. We illustrate applications of our
diagrams: we introduce a diagram definition of Rovelli's surface amplitudes as
well as of the canonical transition amplitudes. Importantly, our operator spin
network diagrams are defined in a sufficiently general way to accommodate all
the versions of the EPRL or the FK model, as well as other possible models. The
diagrams are also compatible with the structure of the LQG Hamiltonian
operators, what is an additional advantage. Finally, a scheme for a complete
definition of a spin foam theory by declaring a set of interaction vertices
emerges from the examples presented at the end of the paper.Comment: 36 pages, 23 figure
A new look at loop quantum gravity
I describe a possible perspective on the current state of loop quantum
gravity, at the light of the developments of the last years. I point out that a
theory is now available, having a well-defined background-independent
kinematics and a dynamics allowing transition amplitudes to be computed
explicitly in different regimes. I underline the fact that the dynamics can be
given in terms of a simple vertex function, largely determined by locality,
diffeomorphism invariance and local Lorentz invariance. I emphasize the
importance of approximations. I list open problems.Comment: 15 pages, 5 figure