16 research outputs found

    From covariant to canonical formulations of discrete gravity

    Full text link
    Starting from an action for discretized gravity we derive a canonical formalism that exactly reproduces the dynamics and (broken) symmetries of the covariant formalism. For linearized Regge calculus on a flat background -- which exhibits exact gauge symmetries -- we derive local and first class constraints for arbitrary triangulated Cauchy surfaces. These constraints have a clear geometric interpretation and are a first step towards obtaining anomaly--free constraint algebras for canonical lattice gravity. Taking higher order dynamics into account the symmetries of the action are broken. This results in consistency conditions on the background gauge parameters arising from the lowest non--linear equations of motion. In the canonical framework the constraints to quadratic order turn out to depend on the background gauge parameters and are therefore pseudo constraints. These considerations are important for connecting path integral and canonical quantizations of gravity, in particular if one attempts a perturbative expansion.Comment: 37 pages, 5 figures (minor modifications, matches published version + updated references

    From the discrete to the continuous - towards a cylindrically consistent dynamics

    Full text link
    Discrete models usually represent approximations to continuum physics. Cylindrical consistency provides a framework in which discretizations mirror exactly the continuum limit. Being a standard tool for the kinematics of loop quantum gravity we propose a coarse graining procedure that aims at constructing a cylindrically consistent dynamics in the form of transition amplitudes and Hamilton's principal functions. The coarse graining procedure, which is motivated by tensor network renormalization methods, provides a systematic approximation scheme towards this end. A crucial role in this coarse graining scheme is played by embedding maps that allow the interpretation of discrete boundary data as continuum configurations. These embedding maps should be selected according to the dynamics of the system, as a choice of embedding maps will determine a truncation of the renormalization flow.Comment: 22 page

    (Broken) Gauge Symmetries and Constraints in Regge Calculus

    Full text link
    We will examine the issue of diffeomorphism symmetry in simplicial models of (quantum) gravity, in particular for Regge calculus. We find that for a solution with curvature there do not exist exact gauge symmetries on the discrete level. Furthermore we derive a canonical formulation that exactly matches the dynamics and hence symmetries of the covariant picture. In this canonical formulation broken symmetries lead to the replacements of constraints by so--called pseudo constraints. These considerations should be taken into account in attempts to connect spin foam models, based on the Regge action, with canonical loop quantum gravity, which aims at implementing proper constraints. We will argue that the long standing problem of finding a consistent constraint algebra for discretized gravity theories is equivalent to the problem of finding an action with exact diffeomorphism symmetries. Finally we will analyze different limits in which the pseudo constraints might turn into proper constraints. This could be helpful to infer alternative discretization schemes in which the symmetries are not broken.Comment: 32 pages, 15 figure

    Regge calculus from a new angle

    Full text link
    In Regge calculus space time is usually approximated by a triangulation with flat simplices. We present a formulation using simplices with constant sectional curvature adjusted to the presence of a cosmological constant. As we will show such a formulation allows to replace the length variables by 3d or 4d dihedral angles as basic variables. Moreover we will introduce a first order formulation, which in contrast to using flat simplices, does not require any constraints. These considerations could be useful for the construction of quantum gravity models with a cosmological constant.Comment: 8 page

    Phase space descriptions for simplicial 4d geometries

    Full text link
    Starting from the canonical phase space for discretised (4d) BF-theory, we implement a canonical version of the simplicity constraints and construct phase spaces for simplicial geometries. Our construction allows us to study the connection between different versions of Regge calculus and approaches using connection variables, such as loop quantum gravity. We find that on a fixed triangulation the (gauge invariant) phase space associated to loop quantum gravity is genuinely larger than the one for length and even area Regge calculus. Rather, it corresponds to the phase space of area-angle Regge calculus, as defined by Dittrich and Speziale in [arXiv:0802.0864] (prior to the imposition of gluing constraints, that ensure the metricity of the triangulation). We argue that this is due to the fact that the simplicity constraints are not fully implemented in canonical loop quantum gravity. Finally, we show that for a subclass of triangulations one can construct first class Hamiltonian and Diffeomorphism constraints leading to flat 4d space-times.Comment: corrected structure constants, several references ad

    Operator Spin Foam Models

    Full text link
    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as the main tool. An equivalence relation we impose in the set of the operator spin foams allows to split the faces and the edges of the foams. The consistency with that relation requires introduction of the (familiar for the BF theory) face amplitude. The operator spin foam models are defined quite generally. Imposing a maximal symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with demanding consistency with splitting the edges, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on Spin(4) BF spin foam model is exactly the way we tend to view 4d quantum gravity, starting with the BC model and continuing with the EPRL or FK models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. We discuss the examples: BF spin foam model, the BC model, and the model obtained by application of our framework to the EPRL intertwiners.Comment: 19 pages, 11 figures, RevTex4.

    Coarse graining methods for spin net and spin foam models

    Full text link
    We undertake first steps in making a class of discrete models of quantum gravity, spin foams, accessible to a large scale analysis by numerical and computational methods. In particular, we apply Migdal-Kadanoff and Tensor Network Renormalization schemes to spin net and spin foam models based on finite Abelian groups and introduce `cutoff models' to probe the fate of gauge symmetries under various such approximated renormalization group flows. For the Tensor Network Renormalization analysis, a new Gauss constraint preserving algorithm is introduced to improve numerical stability and aid physical interpretation. We also describe the fixed point structure and establish an equivalence of certain models.Comment: 39 pages, 13 figures, 1 tabl

    Feynman diagrammatic approach to spin foams

    Full text link
    "The Spin Foams for People Without the 3d/4d Imagination" could be an alternative title of our work. We derive spin foams from operator spin network diagrams} we introduce. Our diagrams are the spin network analogy of the Feynman diagrams. Their framework is compatible with the framework of Loop Quantum Gravity. For every operator spin network diagram we construct a corresponding operator spin foam. Admitting all the spin networks of LQG and all possible diagrams leads to a clearly defined large class of operator spin foams. In this way our framework provides a proposal for a class of 2-cell complexes that should be used in the spin foam theories of LQG. Within this class, our diagrams are just equivalent to the spin foams. The advantage, however, in the diagram framework is, that it is self contained, all the amplitudes can be calculated directly from the diagrams without explicit visualization of the corresponding spin foams. The spin network diagram operators and amplitudes are consistently defined on their own. Each diagram encodes all the combinatorial information. We illustrate applications of our diagrams: we introduce a diagram definition of Rovelli's surface amplitudes as well as of the canonical transition amplitudes. Importantly, our operator spin network diagrams are defined in a sufficiently general way to accommodate all the versions of the EPRL or the FK model, as well as other possible models. The diagrams are also compatible with the structure of the LQG Hamiltonian operators, what is an additional advantage. Finally, a scheme for a complete definition of a spin foam theory by declaring a set of interaction vertices emerges from the examples presented at the end of the paper.Comment: 36 pages, 23 figure

    A new look at loop quantum gravity

    Full text link
    I describe a possible perspective on the current state of loop quantum gravity, at the light of the developments of the last years. I point out that a theory is now available, having a well-defined background-independent kinematics and a dynamics allowing transition amplitudes to be computed explicitly in different regimes. I underline the fact that the dynamics can be given in terms of a simple vertex function, largely determined by locality, diffeomorphism invariance and local Lorentz invariance. I emphasize the importance of approximations. I list open problems.Comment: 15 pages, 5 figure
    corecore