59 research outputs found
Inner and outer edge states in graphene rings: A numerical investigation
We numerically investigate quantum rings in graphene and find that their
electronic properties may be strongly influenced by the geometry, the edge
symmetries and the structure of the corners. Energy spectra are calculated for
different geometries (triangular, hexagonal and rhombus-shaped graphene rings)
and edge terminations (zigzag, armchair, as well as the disordered edge of a
round geometry). The states localized at the inner edges of the graphene rings
describe different evolution as a function of magnetic field when compared to
those localized at the outer edges. We show that these different evolutions are
the reason for the formation of sub-bands of edge states energy levels,
separated by gaps (anticrossings). It is evident from mapping the charge
densities that the anticrossings occur due to the coupling between inner and
outer edge states.Comment: 8 pages, 7 figures. Figures in low resolution due to size
requirements - higher quality figures on reques
Resonant tunneling through protected quantum dots at phosphorene edges
We theoretically investigate phosphorene zigzag nanorribons as a platform for
constriction engineering. In the presence of a constriction at the upper edge,
quantum confinement of edge protected states reveals resonant tunnelling
Breit-Wigner transmission peaks, if the upper edge is uncoupled to the lower
edge. Coupling between edges in thin constrictions gives rise to Fano-like and
anti-resonances in the transmission spectrum of the system.Comment: 8 pages,7 figure
Third edge for a graphene nanoribbon: A tight-binding model calculation
The electronic and transport properties of an extended linear defect embedded
in a zigzag nanoribbon of realistic width are studied, within a tight binding
model approach. Our results suggest that such defect profoundly modify the
properties of the nanoribbon, introducing new conductance quantization values
and modifying the conductance quantization thresholds. The linear defect along
the nanoribbon behaves as an effective third edge of the system, which shows a
metallic behavior, giving rise to new conduction pathways that could be used in
nanoscale circuitry as a quantum wire.Comment: 6 pages, 6 figures. Two new figures and a few references adde
Graphene kirigami as a platform for stretchable and tunable quantum dot arrays
The quantum transport properties of a graphene kirigami similar to those
studied in recent experiments are calculated in the regime of elastic,
reversible deformations. Our results show that, at low electronic densities,
the conductance profile of such structures replicates that of a system of
coupled quantum dots, characterized by a sequence of minibands and stop-gaps.
The conductance and I-V curves have different characteristics in the distinct
stages of elastic deformation that characterize the elongation of these
structures. Notably, the effective coupling between localized states is
strongly reduced in the small elongation stage, whereas in the large elongation
regime the development of strong, localized pseudomagnetic field barriers can
reinforce the coupling and reestablish resonant tunneling across the kirigami.
This provides an interesting example of interplay between geometry and
pseudomagnetic field-induced confinement. The alternating miniband and
stop-gaps in the transmission lead to I-V characteristics with negative
differential conductance in well defined energy/doping ranges. These effects
should be stable in a realistic scenario that includes edge roughness and
Coulomb interactions, as these are expected to further promote localization of
states at low energies in narrow segments of graphene nanostructures.Comment: 10 pages, 10 figure
Chirality probe of twisted bilayer graphene in the linear transport regime
We propose a minimal transport experiment in the linear regime that can probe
the chirality of twisted moir\'e structures. First, we point out that usual
two-terminal conductance measurements cannot access the chirality of a system.
Only with a third contact and in the presence of an in-plane magnetic field, a
chiral system displays non-reciprocal transport even if all contacts are
symmetric. We thus propose to use the third lead as a voltage probe and show
that opposite enantiomers give rise to different voltage drops on the third
lead. The third lead can also be used as a current probe in the case of
layer-discriminating contacts that can detect different handedness even in the
absence of a magnetic field. Our exact symmetry considerations are supported by
numerical calculations that confirm our conclusions and also demonstrate that
there is a change of chirality around the magic angle.Comment: 13 pages, 6 figure
Factors controlling interannual variability of vertical organic matter export and phytoplankton bloom dynamics – a numerical case-study for the NW Mediterranean Sea
Mid-latitude spring blooms of phytoplankton show considerable year-to-year variability in timing, spatial extent and intensity. It is still unclear to what degree the bloom variability is connected to the magnitude of the vertical flux of organic matter. A coupled three-dimensional hydrodynamic-biogeochemical model is used to relate interannual variability in phytoplankton spring-bloom dynamics to variability in the vertical export of organic matter in the NW Mediterranean Sea. Simulation results from 2001 to 2010, validated against remote-sensing chlorophyll, show marked interannual variability in both timing and shape of the bloom. Model results show a tendency for the bloom to start later after cold and windy winters. However, the onset of the bloom occurs often when the mixed layer is still several hundred metres deep while the heat flux is already approaching zero and turbulent mixing is low. Frequency and intensity of wind episodes control both the timing and development of the bloom and the consequent export flux of organic matter. The wintertime flux is greater than zero and shows relatively low interannual variability. The magnitude of the interannual variability is mainly determined in March when the frequency of windy days positively correlates with the export flux. Frequent wind-driven mixing episodes act to increase the export flux and, at the same time, to interrupt the bloom. Perhaps counterintuitively, our analysis shows that years with discontinuous, low-chlorophyll blooms are likely to have higher export flux than years with intense uninterrupted blooms. The NW Mediterranean shows strong analogy with the North Atlantic section within the same latitude range. Hence, our results may also be applicable to this quantitatively more important area of the world ocean
- …