71 research outputs found

    Investigating the effect of rotational degree of freedom on a circular cylinder at low reynolds number in cross flow

    Get PDF
    Numerical simulations of Vortex-Induced Vibrations (VIV) of a circular cylinder in cross flow with a rotational degree of freedom about its axis have been carried out by means of a finite-volume method. The study is performed in two dimensions at a Reynolds number of Re D = 100, based on the free stream velocity and the diameter, D, of the cylinder. The effect of the rotational degree of freedom on the cylinder's lift and drag forces are compared with the baseline simulation results of flow around a stationary cylinder. The introduction of a rotational degree of freedom (d.o.f) is observed to cause the lift and drag forces to change. Also, the pattern of vortex shedding behind the cylinder is found to drastically change when the cylinder is allowed to rotate

    A comparative study of immersed-boundary interpolation methods for a flow around a stationary cylinder at low Reynolds number

    Get PDF
    The accuracy and computational efficiency of various interpolation methods for the implementation of non grid-confirming boundaries is assessed. The aim of the research is to select an interpolation method that is both efficient and sufficiently accurate to be used in the simulation of vortex induced vibration of the flow around a deformable cylinder. Results are presented of an immersed boundary implementation in which the velocities near nonconfirming boundaries were interpolated in the normal direction to the walls. The flow field is solved on a Cartesian grid using a finite volume method with a staggered variable arrangement. The Strouhal number and Drag coefficient for various cases are reported. The results show a good agreement with the literature. Also, the drag coefficient and Strouhal number results for five different interpolation methods were compared it was shown that for a stationary cylinder at low Reynolds number, the interpolation method could affect the drag coefficient by a maximum 2% and the Strouhal number by maximum of 3%. In addition, the bi-liner interpolation method took about 2% more computational time per vortex shedding cycle in companion to the other methods

    Nonlinear multi-scale homogenization with different structural models at different scales

    Get PDF
    We present an extension of the computational homogenization theory to cases where different structural models are used at different scales and no energy potential can be defined at the small scale. We observe that volumetric averaging, which is not applicable in such cases unless similarities exist in the macro-scale and micro-scale models, is not a necessary prerequisite to carry out computational homogenization. At each material point of the macro-model, we replace the conventional representative volume element with a representative domain element (RDE). To link the large-scale and small-scale problems, we then introduce a linear operator, mapping the smooth part of the small-scale displacement field of each RDE to the large-scale strain field and a trace operator to impose boundary conditions in the RDE. The latter is defined on the basis of engineering judgement, analogously to the conventional theory. A generalized Hill’s condition, rather than being invoked, is derived from duality principles and is used to recover the stress measures at the large scale. For the implementation in a nonlinear finite-element analysis, ‘control nodes’ and constraint equationsare used. The effectiveness of the procedure is demonstrated for three beam-to-truss example problems, for which multi-scale convergence is numerically analysed.Lloyd’s Register EME

    A Critical Review of Deep Learning-Based Multi-Sensor Fusion Techniques

    Get PDF
    In this review, we provide a detailed coverage of multi-sensor fusion techniques that use RGB stereo images and a sparse LiDAR-projected depth map as input data to output a dense depth map prediction. We cover state-of-the-art fusion techniques which, in recent years, have been deep learning-based methods that are end-to-end trainable. We then conduct a comparative evaluation of the state-of-the-art techniques and provide a detailed analysis of their strengths and limitations as well as the applications they are best suited for

    The effects of dynamic loading on hysteretic behavior of frictional dampers

    Get PDF
    During an earthquake excitation, a frictional damper may experience many cycles of dynamic loading. The effects of wear and heat induced by the cyclic loading result in the possible decay of the slippage load which subsequently reduce the energy absorption of the damper. In this paper, the effect of dynamic loading on hysteretic behavior of a special kind of frictional damper, namely, cylindrical frictional damper (CFD), is investigated by experimental means as well as numerical models which also account for coupled thermal-structural interaction. The damper is deemed to be more susceptible to thermal deformations due to the shrink-fit mechanism by which the device is assembled. The numerical models are validated experimentally and may be utilized for simulation of dynamic cyclic loading on frictional dampers. The results demonstrate that the slippage load is reduced gradually when subjected to consecutive cycles. This drift is attributed to thermal deformation. The verified numerical models are used to improve the geometry of the CFD. With the geometrical improvements implemented, the subsequent numerical studies confirmed that almost no degradation of the slippage load occurred. Furthermore, a dimensionless parameter is introduced by the authors which shows the effect of wear on the response of CFDs. © 2014 Hamid Rahmani Samani et al

    Development of a constitutive model to simulate unbonded flexible riser pipe elements

    Get PDF
    The principal objective of this investigation is to develop a constitutive model to simulate the hysteresis behaviour of unbonded flexible risers. A new constitutive model for flexible risers is proposed and a procedure for the identification of the related input parameters is developed using a multi-scale approach. The constitutive model is formulated in the framework of an Euler-Bernoulli beam model, with the addition of suitable pressure terms to the generalised stresses to account for the internal and external pressures, and therefore can be efficiently used for large-scale analyses. The developed non-linear relationship between generalised stresses and strains in the beam is based on the analogy between frictional slipping between different layers of a flexible riser and frictional slipping between micro-planes of a continuum medium in nonassociative elasto-plasticity. Hence, a linear elastic relationship is used for the initial response in which no-slip occurs; an onset-slip function is introduced to define the ‘noslip’ domain, i.e. the set of generalised stresses for which no slip occurs; a nonassociative rule with linear kinematic hardening is used to model the full-slip phase. The results of several numerical simulations for a riser of small-length, obtained with a very detailed (small-scale) non-linear finite-element model, are used to identify the parameters of the constitutive law, bridging in this way the small scale of the detailed finite-element simulations with the large scale of the beam model. The effectiveness of the proposed method is validated by the satisfactory agreement between the results of various detailed finite-element simulations for a short riser, subject to internal and external uniform pressures and cyclic bending and tensile loadings, with those given by the proposed constitutive law. The merit of the present constitutive law lies in the capturing of many important aspects of risers structural response, including the energy dissipation due to frictional slip between layers and the hysteretic response. This privilege allows one to accurately study the cyclic behavior of unbonded flexible risers subject to axial tension, bending moment, internal and external pressures.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Grain refinement and nucleation processes in aluminium alloys through liquid shearing

    Get PDF
    The industrial practice of grain refinement of aluminium alloys involves the addition of inoculant particles to initiate alpha-aluminium grains at small undercoolings. This results in a uniformly fine, equiaxed as-cast microstructure and is commonly achieved using Al-Ti-B additions. The phase responsible for initiation of grains in aluminium melts inoculated with Al-Ti-B was determined during the 1990s; since that time, scientific understanding of grain refinement has advanced rapidly. However, one of the main problems of addition inoculants is impurities which is added to the melt and may affect the desired characteristics of the product. With regards to this problem other methods of refinement and the mechanisms of refining have not been fully understood and prediction of as-cast Microstructures in aluminium alloys has much scope for improvement. In this thesis: 1-Factors in establishing equiaxed microstructure were analysed and the origin of equiaxed grains were explored. Then the nucleation process and the involved mechanisms were investigated in depth and control of nucleation process to achieve a fine and uniform structure was set as target. 2-Refinement of microstructure with introduction of shearing was evaluated and the process of refinement in the mushy zone (semisolid state) as a base line was established. Then introduction of shearing above liquidus as a development was analysed and outstanding refinement was seen with shearing above liquidus which have not been investigated properly elsewhere. 3- The mechanisms of refinement by introducing shearing were investigated and the refining mechanisms below and specifically above liquidus were investigated systematically. As results an appropriate understanding about the mechanisms of nucleation and refinement above liquidus was established. 4- Finally, with simulation the most dominant factor in approaching fine grain size by applying shear was identified and the results of experimental examination was verified by simulation.EThOS - Electronic Theses Online ServiceUK Department of Trade and Industry (DTI)GBUnited Kingdo
    • 

    corecore