1,517 research outputs found
Policy-based autonomic control service
Recently, there has been a considerable interest in policy-based, goal-oriented service management and autonomic computing. Much work is still required to investigate designs and policy models and associate meta-reasoning systems for policy-based autonomic systems. In this paper we outline a proposed autonomic middleware control service used to orchestrate selfhealing of distributed applications. Policies are used to adjust the systems autonomy and define self-healing strategies to stabilize/correct a given system in the event of failures
A deliberative model for self-adaptation middleware using architectural dependency
A crucial prerequisite to externalized adaptation is an understanding of how components are interconnected, or more particularly how and why they depend on one another. Such dependencies can be used to provide an architectural model, which provides a reference point for externalized adaptation. In this paper, it is described how dependencies are used as a basis to systems' self-understanding and subsequent architectural reconfigurations. The approach is based on the combination of: instrumentation services, a dependency meta-model and a system controller. In particular, the latter uses self-healing repair rules (or conflict resolution strategies), based on extensible beliefs, desires and intention (EBDI) model, to reflect reconfiguration changes back to a target application under examination
Self-managed cells and their federation
Future e-Health systems will consist of low-power, on-body wireless sensors attached to mobile users that interact with a ubiquitous computing environment. This kind of system needs to be able to configure itself with little or no user input; more importantly, it is required to adapt autonomously to changes such as user movement, device failure, the addition or loss of services, and proximity to other such systems. This extended abstract describes the basic architecture of a Self-Managed Cell (SMC) to address these requirements, and discusses various forms of federation between/among SMCs. This structure is motivated by a typical e-Health scenario
Nonplanar integrability at two loops
In this article we compute the action of the two loop dilatation operator on
restricted Schur polynomials that belong to the su(2) sector, in the displaced
corners approximation. In this non-planar large N limit, operators that
diagonalize the one loop dilatation operator are not corrected at two loops.
The resulting spectrum of anomalous dimensions is related to a set of decoupled
harmonic oscillators, indicating integrability in this sector of the theory at
two loops. The anomalous dimensions are a non-trivial function of the 't Hooft
coupling, with a spectrum that is continuous and starting at zero at large N,
but discrete at finite N.Comment: version to appear in JHE
Beyond the Planar Limit in ABJM
In this article we consider gauge theories with a U(N)X U(N) gauge group. We
provide, for the first time, a complete set of operators built from scalar
fields that are in the bi fundamental of the two groups. Our operators
diagonalize the two point function of the free field theory at all orders in
1/N. We then use this basis to investigate non-planar anomalous dimensions in
the ABJM theory. We show that the dilatation operator reduces to a set of
decoupled harmonic oscillators, signaling integrability in a nonplanar large N
limit.Comment: v2: minor revisison
Recommended from our members
Bond-graph Input-State-Output Port-Hamiltonian formulation of memristive networks for emulation of Josephson junction circuits
A bond graph Input-State-Output Port-Hamiltonian formulation of memristive networks for Josephson junction circuits in state space is presented. The methodology has
applications to the modeling of SQUIDs and other non-linear transducers and enables the formulation of input-output models of complex components embedded in non-linear networks
South Carolina Water Plan
2008 S.C. Water Resources ConferenceAddressing Water Challenges Facing the State and Regio
Exposure to the News Networks Through Social Media Sites and Their Reflections on Spreading Rumors among Students – Field Study
The scientific study aimed to identify rumors in the students society in the age of social media sites and confrontation mechanisms. The research community included a sample of experts who use new media. Descriptive and statistical approaches (interviews and questionnaires) are used to analyze and understand rumors through social media sites and how to confront them. The study came up with results, the most important of them are as follows: 62% of the research community believes that students (young people) use of news networks via social media sites affects the spread of rumors, while 63% of the research community considers that the quality of social media sites used by young people helps spread rumors, and 43% of the research community agree that technology users are predominantly young people, which helps spread the rumor. Finally, the study recommended that news sites pay attention to the method of dealing with crises, investigate accuracy and credibility, and increase the effective communication between the leaders and students institutions
Recommended from our members
Sequencing, Analysis, and Annotation of Expressed Sequence Tags for Camelus dromedarius
Despite its economical, cultural, and biological importance, there has not been a large scale sequencing project to date for Camelus dromedarius. With the goal of sequencing complete DNA of the organism, we first established and sequenced camel EST libraries, generating 70,272 reads. Following trimming, chimera check, repeat masking, cluster and assembly, we obtained 23,602 putative gene sequences, out of which over 4,500 potentially novel or fast evolving gene sequences do not carry any homology to other available genomes. Functional annotation of sequences with similarities in nucleotide and protein databases has been obtained using Gene Ontology classification. Comparison to available full length cDNA sequences and Open Reading Frame (ORF) analysis of camel sequences that exhibit homology to known genes show more than 80% of the contigs with an ORF>300 bp and ~40% hits extending to the start codons of full length cDNAs suggesting successful characterization of camel genes. Similarity analyses are done separately for different organisms including human, mouse, bovine, and rat. Accompanying web portal, CAGBASE (http://camel.kacst.edu.sa/), hosts a relational database containing annotated EST sequences and analysis tools with possibility to add sequences from public domain. We anticipate our results to provide a home base for genomic studies of camel and other comparative studies enabling a starting point for whole genome sequencing of the organism
- …
