544 research outputs found
Three-dimensional linear modeling of tongue: articulatory data and models
Volume images of tongue were acquired by MRI from one subject uttering a corpus representative of French allophone articulations. Supplementary images of hard palate, jaw, and hyoid bone were acquired by CT. The three-dimensional tongue surface outline was represented, for each of the 46 articulations of the corpus, by a mesh obtained by fitting a generic mesh to the set of tongue contours traced from the MR images. Jaw and hyoid bone positions were also determined. The set of the 3D coordinates of all vertices of the tongue mesh constituted the variables on which linear component analysis was applied. Six linearly independent components were found to explain 87 % of the variance of the tongue data. The associated parameters that control the linear articulator tongue model are related to jaw and hyoid positions, and to the actions of tongue muscles such as the genioglossus, the hyoglossus or the styloglossus. In addition, it was shown that the full 3D tongue surface is predictable from its 2D midsagittal contour with a mere 13.6 % increase in the overall full 3D reconstruction RMS error, which confirms quantitatively previous results. Finally, the tongue volume was found to depart by at most ±5% from its mean over the corpus, which supports the hypothesis of tongue tissue incompressibility for speech
Comparison of energy consumption and costs of different HEVs and PHEVs in European and American context
This paper will analyse on the one hand the potential of Plug in Hybrid electric Vehicles to significantly reduce fuel consumption and displace it torward various primary energies thanks to the electricity sector. On the other hand the total cost of ownership of two different PHEV architectures will be compared to a conventional cehicle and a HEV without external charging
Measuring a Light Neutralino Mass at the ILC: Testing the MSSM Neutralino Cold Dark Matter Model
The LEP experiments give a lower bound on the neutralino mass of about 46 GeV
which, however, relies on a supersymmetric grand unification relation. Dropping
this assumption, the experimental lower bound on the neutralino mass vanishes
completely. Recent analyses suggest, however, that in the minimal
supersymmetric standard model (MSSM), a light neutralino dark matter candidate
has a lower bound on its mass of about 7 GeV. In light of this, we investigate
the mass sensitivity at the ILC for very light neutralinos. We study slepton
pair production, followed by the decay of the sleptons to a lepton and the
lightest neutralino. We find that the mass measurement accuracy for a few-GeV
neutralino is around 2 GeV, or even less if the relevant slepton is
sufficiently light. We thus conclude that the ILC can help verify or falsify
the MSSM neutralino cold dark matter model even for very light neutralinos.Comment: 7 pages, 1 figure; references adde
Multi-lepton Signatures of a Hidden Sector in Rare B Decays
We explore the sensitivity of flavour changing b -> s transitions to a
(sub-)GeV hidden sector with generic couplings to the Standard Model through
the Higgs, vector and axion portals. The underlying two-body decays of B
mesons, B -> X_s S and B0 -> SS, where S denotes a generic new GeV-scale
particle, may significantly enhance the yield of monochromatic lepton pairs in
the final state via prompt decays of S to a dilepton pair. Existing
measurements of the charged lepton spectrum in neutral-current semileptonic B
decays provide bounds on the parameters of the light sector that are
significantly more stringent than the requirements of naturalness. New search
modes, such as B -> X_s + n(l+l-) and B0 -> n(l+l-) with n > 1 can provide
additional sensitivity to scenarios in which both the Higgs and vector portals
are active, and are accessible to (super-)B factories and hadron colliders.Comment: 12 pages, 2 figures; v2: reference added, minor correction
Posttransplant lymphoproliferative disorders in neuronal xenotransplanted macaques
Posttransplant lymphoproliferative disorders (PTLDs) are a heterogeneous group of lymphoid proliferations that occur in the setting of depressed T-cell function due to immunosuppressive therapy used following solid organ transplantation, hematopoietic stem cell transplantation, and also xenotransplantation. In the present study, 28 immunosuppressed parkinsonian Macaca fascicularis were intracerebrally injected with wild-type or CTLA4-Ig transgenic porcine xenografts to identify a suitable strategy to enable long-term cell survival, maturation, and differentiation. Nine of 28 (32%) immunosuppressed primates developed masses compatible with PTLD, located mainly in the gastrointestinal tract and/or nasal cavity. The masses were classified as monomorphic PTLD according to the World Health Organization classification. Immunohistochemistry and polymerase chain reaction (PCR) analyses revealed that the PTLDs were associated with macaca lymphocryptovirus as confirmed by double-labeling immunohistochemistry for CD20 and Epstein-Barr nuclear antigen 2 (EBNA-2), where the viral protein was located within the CD20+ neoplastic B cells. In sera from 3 distinct phases of the experimental life of the primates, testing by quantitative PCR revealed a progression of the viral load that paralleled the PTLD progression and no evidence of zoonotic transmission of porcine lymphotropic herpesvirus through xenoneuronal grafts. These data suggest that monitoring the variation of macaca lymphocryptovirus DNA in primates could be used as a possible early diagnostic tool for PTLD progression, allowing preemptive treatment such as immunosuppression therapy reduction
Features of X-ray Absorption Densitometry of Large-size Objects with Variable Thickness
Features of formation and processing of the primary radiometric signals in the digital high-energy X-ray absorption densitometers for the homogeneous objects with variable thickness are examined. The densitometer's equation based on the polynomial approximation of the object's ray thickness dependence from its mass thickness is proposed. Guidance to select the capacity of the analog-digital converter is given. There is one example of the densitometer's equation coefficients calculation to examine the carbon, aluminum and steel wares with the mass density from 15 to 80 g/cm{2}. It was shown that disagreement of the experimental and estimated values of the ray thickness for the similar mass thicknesses of the testing object is conditioned by the scattered radiation. On the high-energy digital radiography set with the X-ray source - the betatron MIB-4.5/9 the accuracy of the experimental estimation of the density was within 0.0086 g/cm{3} for the steel ware thickness from 25 to 100 mm
Use of dual carbon–chlorine isotope analysis to assess the degradation pathways of 1,1,1-trichloroethane in groundwater
Compound-specific isotope analysis (CSIA) is a powerful tool to track contaminant fate in groundwater. However, the application of CSIA to chlorinated ethanes has received little attention so far. These compounds are toxic and prevalent groundwater contaminants of environmental concern. The high susceptibility of chlorinated ethanes like 1,1,1-trichloroethane (1,1,1-TCA) to be transformed via different competing pathways (biotic and abiotic) complicates the assessment of their fate in the subsurface. In this study, the use of a dual C-Cl isotope approach to identify the active degradation pathways of 1,1,1- TCA is evaluated for the first time in an aerobic aquifer impacted by 1,1,1-TCA and trichloroethylene (TCE) with concentrations of up to 20 mg/L and 3.4 mg/L, respectively. The reaction-specific dual carbon-chlorine (C-Cl) isotope trends determined in a recent laboratory study illustrated the potential of a dual isotope approach to identify contaminant degradation pathways of 1,1,1-TCA. Compared to the dual isotope slopes (Δδ13C/Δδ37CI) previously determined in the laboratory for dehydrohalogenation/hydrolysis (DH/HY, 0.33 ± 0.04) and oxidation by persulfate (∞), the slope determined from field samples (0.6 ± 0.2, r2 = 0.75) is closer to the one observed for DH/HY, pointing to DH/HY as the predominant degradation pathway of 1,1,1-TCA in the aquifer. The observed deviation could be explained by a minor contribution of additional degradation processes. This result, along with the little degradation of TCE determined from isotope measurements, confirmed that 1,1,1-TCA is the main source of the 1,1-dichlorethylene (1,1-DCE) detected in the aquifer with concentrations of up to 10 mg/L. This study demonstrates that a dual C-Cl isotope approach can strongly improve the qualitative and quantitative assessment of 1,1,1-TCA degradation processes in the field
- …