456 research outputs found

    A near-infrared and optical photometric study of the Sculptor dwarf spheroidal galaxy: implications for the metallicity spread

    Full text link
    We present here a detailed study of the Sculptor dSph galaxy red giant branch (RGB) and horizontal branch (HB) morphology, combining new near-infrared photometry from CIRSI, with optical data from the ESO WFI. For a Sculptor-like old and generally metal-poor system, the position of RGB stars on the colour-magnitude diagram is mainly metallicity dependent. The advantage of using optical-NIR colours is that the position of the RGB locus is much more sensitive to metallicity than with optical colours alone. In contrast the horizontal branch (HB) morphology is strongly dependent on both metallicity and age. Therefore a detailed study of both the RGB in optical-NIR colours and the HB can help break the age-metallicity degeneracy. Our measured photometric width of the Sculptor giant branch corresponds to a range in metallicity of 0.75 dex. We detect the RGB and AGB bumps in both the NIR and optical luminosity functions, and derive from them a mean metallicity of [M/H] = -1.3 +/- 0.1. From isochrone fitting we derive a mean metallicity of [Fe/H] = -1.42 with a dispersion of 0.2 dex. These photometric estimators are for the first time consistent with individual metallicity measurements derived from spectroscopic observations. No spatial gradient is detected in the RGB morphology within a radius of 13 arcmin, twice the core radius. On the other hand, a significant gradient is observed in the HB morphology index, confirming the `second parameter problem' present in this galaxy. These observations are consistent with an early extended period of star formation continuing in time for a few Gyr. (Abridged)Comment: 9 pages, 10 figures. Accepted for publication in MNRA

    A new look at the kinematics of the bulge from an N-body model

    Full text link
    (Abridged) By using an N-body simulation of a bulge that was formed via a bar instability mechanism, we analyse the imprints of the initial (i.e. before bar formation) location of stars on the bulge kinematics, in particular on the heliocentric radial velocity distribution of bulge stars. Four different latitudes were considered: b=−4∘b=-4^\circ, −6∘-6^\circ, −8∘-8^\circ, and −10∘-10^\circ, along the bulge minor axis as well as outside it, at l=±5∘l=\pm5^\circ and l=±10∘l=\pm10^\circ. The bulge X-shaped structure comprises stars that formed in the disk at different locations. Stars formed in the outer disk, beyond the end of the bar, which are part of the boxy peanut-bulge structure may show peaks in the velocity distributions at positive and negative heliocentric radial velocities with high absolute values that can be larger than 100 km\rm km s−1\rm s^{-1}, depending on the observed direction. In some cases the structure of the velocity field is more complex and several peaks are observed. Stars formed in the inner disk, the most numerous, contribute predominantly to the X-shaped structure and present different kinematic characteristics. Our results may enable us to interpret the cold high-velocity peak observed in the APOGEE commissioning data, as well as the excess of high-velocity stars in the near and far arms of the X-shaped structure at ll=0∘0^\circ and bb=−6∘-6^\circ. When compared with real data, the kinematic picture becomes more complex due to the possible presence in the observed samples of classical bulge and/or thick disk stars. Overall, our results point to the existence of complex patterns and structures in the bulge velocity fields, which are generated by the bar. This suggests that caution should be used when interpreting the bulge kinematics: the presence of substructures, peaks and clumps in the velocity fields is not necessarily a sign of past accretion events.Comment: 21 pages, 18 figures. Accepted for publication in A&

    Observational Hertzsprung-Russell diagrams

    Get PDF
    Context. Gaia Data Release 2 provides high-precision astrometry and three-band photometry for about 1.3 billion sources over the full sky. The precision, accuracy, and homogeneity of both astrometry and photometry are unprecedented. Aims. We highlight the power of the Gaia DR2 in studying many fine structures of the Hertzsprung-Russell diagram (HRD). Gaia allows us to present many different HRDs, depending in particular on stellar population selections. We do not aim here for completeness in terms of types of stars or stellar evolutionary aspects. Instead, we have chosen several illustrative examples. Methods. We describe some of the selections that can be made in Gaia DR2 to highlight the main structures of the Gaia HRDs. We select both field and cluster (open and globular) stars, compare the observations with previous classifications and with stellar evolutionary tracks, and we present variations of the Gaia HRD with age, metallicity, and kinematics. Late stages of stellar evolution such as hot subdwarfs, post-AGB stars, planetary nebulae, and white dwarfs are also analysed, as well as low-mass brown dwarf objects. Results. The Gaia HRDs are unprecedented in both precision and coverage of the various Milky Way stellar populations and stellar evolutionary phases. Many fine structures of the HRDs are presented. The clear split of the white dwarf sequence into hydrogen and helium white dwarfs is presented for the first time in an HRD. The relation between kinematics and the HRD is nicely illustrated. Two different populations in a classical kinematic selection of the halo are unambiguously identified in the HRD. Membership and mean parameters for a selected list of open clusters are provided. They allow drawing very detailed cluster sequences, highlighting fine structures, and providing extremely precise empirical isochrones that will lead to more insight in stellar physics. Conclusions. Gaia DR2 demonstrates the potential of combining precise astrometry and photometry for large samples for studies in stellar evolution and stellar population and opens an entire new area for HRD-based studies.Peer reviewe

    The Giraffe Inner Bulge Survey (GIBS) II. Metallicity distributions and alpha element abundances at fixed Galactic latitude

    Full text link
    High resolution (R∼\sim22,500) spectra for 400 red clump giants, in four fields within −4.8∘≲b≲−3.4∘\rm -4.8^{\circ} \lesssim b \lesssim -3.4^{\circ} and −10∘≲l≲+10∘\rm -10^{\circ} \lesssim l \lesssim +10^{\circ}, were obtained within the GIRAFFE Inner Bulge Survey (GIBS) project. To this sample we added another ∼\sim 400 stars in Baade's Window, observed with the identical instrumental configuration. We constructed the metallicity distributions for the entire sample, as well as for each field individually, in order to investigate the presence of gradients or field-to-field variations in the shape of the distributions. The metallicity distributions in the five fields are consistent with being drawn from a single parent population, indicating the absence of a gradient along the major axis of the Galactic bar. The global metallicity distribution is well fitted by two Gaussians. The metal poor component is rather broad, with a mean at =−0.31\rm =-0.31 dex and σ=0.31\sigma=0.31 dex. The metal-rich one is narrower, with mean =+0.26\rm =+0.26 and σ=0.2\sigma=0.2 dex. The [Mg/Fe] ratio follows a tight trend with [Fe/H], with enhancement with respect to solar in the metal-poor regime, similar to the one observed for giant stars in the local thick disc. [Ca/Fe] abundances follow a similar trend, but with a considerably larger scatter than [Mg/Fe]. A decrease in [Mg/Fe] is observed at [Fe/H]=−0.44\rm [Fe/H]=-0.44 dex. This \textit{knee} is in agreement with our previous bulge study of K-giants along the minor axis, but is 0.1 dex lower in metallicity than the one reported for the Bulge micro lensed dwarf and sub-giant stars. We found no variation in α\alpha-element abundance distributions between different fields.Comment: Accepted for publication in A&

    The GIRAFFE Inner Bulge Survey (GIBS). I. Survey Description and a kinematical map of the Milky Way bulge

    Full text link
    The Galactic bulge is a massive, old component of the Milky Way. It is known to host a bar, and it has recently been demonstrated to have a pronounced boxy/peanut structure in its outer region. Several independent studies suggest the presence of more than one stellar populations in the bulge, with different origins and a relative fraction changing across the bulge area. This is the first of a series of papers presenting the results of the Giraffe Inner Bulge Survey, carried out at the ESO-VLT with the multifibre spectrograph FLAMES. Spectra of ~5000 red clump giants in 24 bulge fields have been obtained at resolution R=6500, in the infrared Calcium triplet wavelength region at 8500 {\AA}. They are used to derive radial velocities and metallicities, based on new calibration specifically devised for this project. Radial velocities for another ~1200 bulge red clump giants, obtained from similar archive data, have been added to the sample. Higher resolution spectra have been obtained for 450 additional stars at latitude b=-3.5, with the aim of investigating chemical abundance patterns variations with longitude, across the inner bulge. In total we present here radial velocities for 6392 RC stars. We derive a radial velocity, and velocity dispersion map of the Milky Way bulge, useful to be compared with similar maps of external bulges, and to infer the expected velocities and dispersion at any line of sight. The K-type giants kinematics is consistent with the cylindrical rotation pattern of M-giants from the BRAVA survey. Our sample enables to extend this result to latitude b=-2, closer to the Galactic plane than probed by previous surveys. Finally, we find strong evidence for a velocity dispersion peak at (0,-1) and (0,-2), possibly indicative of a high density peak in the central 250 pc of the bulgeComment: A&A in pres

    Alpha element abundances and gradients in the Milky Way bulge from FLAMES-GIRAFFE spectra of 650 K giants

    Full text link
    We obtained FLAMES-GIRAFFE spectra (R=22,500) at the ESO Very Large Telescope for 650 bulge red giant branch (RGB) stars and performed spectral synthesis to measure Mg, Ca, Ti, and Si abundances. This sample is composed of 474 giant stars observed in 3 fields along the minor axis of the Galactic bulge and at latitudes b=-4, b=-6, b=-12. Another 176 stars belong to a field containing the globular cluster NGC 6553, located at b=-3 and 5 degrees away from the other three fields along the major axis. Our results confirm, with large number statistics, the chemical similarity between the Galactic bulge and thick disk, which are both enhanced in alpha elements when compared to the thin disk. In the same context, we analyze [alpha/Fe] vs. [Fe/H] trends across different bulge regions. The most metal rich stars, showing low [alpha/Fe] ratios at b=-4 disappear at higher Galactic latitudes in agreement with the observed metallicity gradient in the bulge. Metal-poor stars ([Fe/H]<-0.2) show a remarkable homogeneity at different bulge locations. We have obtained further constrains for the formation scenario of the Galactic bulge. A metal-poor component chemically indistinguishable from the thick disk hints for a fast and early formation for both the bulge and the thick disk. Such a component shows no variation, neither in abundances nor kinematics, among different bulge regions. A metal-rich component showing low [alpha/Fe] similar to those of the thin disk disappears at larger latitudes. This allows us to trace a component formed through fast early mergers (classical bulge) and a disk/bar component formed on a more extended timescale.Comment: 13 pages, 17 figures. Accepted for publication in Astronomy and Astrophysic

    Chemical Composition of Extremely Metal-Poor Stars in the Sextans Dwarf Spheroidal Galaxy

    Get PDF
    Chemical abundances of six extremely metal-poor ([Fe/H]<-2.5) stars in the Sextans dwarf spheroidal galaxy are determined based on high resolution spectroscopy (R=40,000) with the Subaru Telescope High Dispersion Spectrograph. (1) The Fe abundances derived from the high resolution spectra are in good agreement with the metallicity estimated from the Ca triplet lines in low resolution spectra. The lack of stars with [Fe/H]=<-3 in Sextans, found by previous estimates from the Ca triplet, is confirmed by our measurements, although we note that high resolution spectroscopy for a larger sample of stars will be necessary to estimate the true fraction of stars with such low metallicity. (2) While one object shows an overabundance of Mg (similar to Galactic halo stars), the Mg/Fe ratios of the remaining five stars are similar to the solar value. This is the first time that low Mg/Fe ratios at such low metallicities have been found in a dwarf spheroidal galaxy. No evidence for over-abundances of Ca and Ti are found in these five stars, though the measurements for these elements are less certain. Possible mechanisms to produce low Mg/Fe ratios, with respect to that of Galactic halo stars, are discussed. (3) Ba is under-abundant in four objects, while the remaining two stars exhibit large and moderate excesses of this element. The abundance distribution of Ba in this galaxy is similar to that in the Galactic halo, indicating that the enrichment of heavy elements, probably by the r-process, started at metallicities [Fe/H] < -2.5, as found in the Galactic halo.Comment: 15 pages, 6 figures, 6 tables, A&A, in pres

    A southern hemisphere survey of the 5780 and 6284 {\AA} diffuse interstellar bands: correlation with the extinction

    Full text link
    We present a new database of 5780.5 and 6283.8 {\AA} DIB measurements and also study their correlation with the reddening. The database is based on high-resolution, high-quality spectra of early-type nearby stars located in the southern hemisphere at an average distance of 300 pc. Equivalent widths of the two DIBs were determined by means of a realistic continuum fitting and synthetic atmospheric transmissions. For all stars that possess a precise measurement of their color excess, we compare the DIBs and the extinction. We find average linear relationships of the DIBS and the color excess that agree well with those of a previous survey of northern hemisphere stars closer than 550 pc. This similarity shows that there is no significant spatial dependence of the average relationship in the solar neighborhood within ≃\simeq 600 pc. A noticeably different result is our higher degree of correlation of the two DIBs with the extinction. We demonstrate that it is simply due to the lower temperature and intrinsic luminosity of our targets. Using cooler target stars reduces the number of outliers, especially for nearby stars, confirming that the radiation field of UV bright stars has a significant influence on the DIB strength. We have used the cleanest data to compute updated DIB shapes.Comment: Astronomy & Astrophysics (in press

    The Gaia-ESO Survey : Extracting diffuse interstellar bands from cool star spectra: DIB-based interstellar medium line-of-sight structures at the kpc scale

    Get PDF
    Date of Acceptance: 05/10/2014Aims. We study how diffuse interstellar bands (DIBs) measured toward distance-distributed target stars can be used to locate dense interstellar (IS) clouds in the Galaxy and probe a line-of-sight (LOS) kinematical structure, a potentially useful tool when gaseous absorption lines are saturated or not available in the spectral range. Cool target stars are numerous enough for this purpose. Methods. We devised automated DIB-fitting methods appropriate for cool star spectra and multiple IS components. The data were fitted with a combination of a synthetic stellar spectrum, a synthetic telluric transmission, and empirical DIB profiles. The initial number of DIB components and their radial velocity were guided by HI 21 cm emission spectra, or, when available in the spectral range, IS neutral sodium absorption lines. For NaI, radial velocities of NaI lines and DIBs were maintained linked during a global simultaneous fit. In parallel, stellar distances and extinctions were estimated self-consistently by means of a 2D Bayesian method from spectroscopically-derived stellar parameters and photometric data. Results. We have analyzed Gaia-ESO Survey (GES) spectra of 225 stars that probe between ∼2 and 10 kpc long LOS in five different regions of the Milky Way. The targets are the two CoRoT fields, two open clusters (NGC 4815 and γ Vel), and the Galactic bulge. Two OGLE fields toward the bulge observed before the GES are also included (205 target stars). Depending on the observed spectral intervals, we extracted one or more of the following DIBs: λλ 6283.8, 6613.6, and 8620.4. For each field, we compared the DIB strengths with the Bayesian distances and extinctions, and the DIB Doppler velocities with the HI emission spectra. Conclusions. For all fields, the DIB strength and the target extinction are well correlated. For targets that are widely distributed in distance, marked steps in DIBs and extinction radial distance profiles match each other and broadly correspond to the expected locations of spiral arms. For all fields, the DIB velocity structure agrees with HI emission spectra, and all detected DIBs correspond to strong NaI lines. This illustrates how DIBs can be used to locate the Galactic interstellar gas and to study its kinematics at the kpc scale, as illustrated by Local and Perseus Arm DIBs that differ by ≳∼30 km s-1, in agreement with HI emission spectra. On the other hand, if most targets are located beyond the main absorber, DIBs can trace the differential reddening within the field.Peer reviewedFinal Accepted Versio

    GYES, a multifibre spectrograph for the CFHT

    Full text link
    We have chosen the name of GYES, one of the mythological giants with one hundred arms, offspring of Gaia and Uranus, for our instrument study of a multifibre spectrograph for the prime focus of the Canada-France-Hawaii Telescope. Such an instrument could provide an excellent ground-based complement for the Gaia mission and a northern complement to the HERMES project on the AAT. The CFHT is well known for providing a stable prime focus environment, with a large field of view, which has hosted several imaging instruments, but has never hosted a multifibre spectrograph. Building upon the experience gained at GEPI with FLAMES-Giraffe and X-Shooter, we are investigating the feasibility of a high multiplex spectrograph (about 500 fibres) over a field of view 1 degree in diameter. We are investigating an instrument with resolution in the range 15000 to 30000, which should provide accurate chemical abundances for stars down to 16th magnitude and radial velocities, accurate to 1 km/s for fainter stars. The study is led by GEPI-Observatoire de Paris with a contribution from Oxford for the study of the positioner. The financing for the study comes from INSU CSAA and Observatoire de Paris. The conceptual study will be delivered to CFHT for review by October 1st 2010.Comment: Contributed talk at the Gaia ELSA conference 2010, S\`evres 7-11 June 2010, to be published on the EAS Series, Editors: C. Turon, F. Arenou & F. Meynadie
    • …
    corecore